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Abstract. I outline a general theoretical framework for understanding the
relationship between genetic algorithms and traditional learning methods on the
one hand, and between symbolic and distributed information processing on the
other. By way of example, I discuss aspects of motor control problems and
describe a theoretical biologically plausible hybrid network inspired by the
theoretical framework. Preliminary analysis suggests the net might be a useful
point of departure for developing biologically plausible visually guided motor
control systems.

1. Introduction

Present development of artificial neural networks, whether by genetic algorithms
or by traditional learning methods, is grossly inadequate as a picture of biological reai-
ity. Network design with genetic algorithms ignores the rble of ontogenetic
behaviour adaptation in response to the characteristics of the particular environment in
which an individual phenotype finds itself. Genetic algorithms typically are applied to
generate zero plasticity networks incapable of ontogenetic development. (This is the
case even for so-called ‘growing networks’ such as [1] in which the ontogeny of a
network is directly, albeit nonlinearly {2], encoded in the genotype and is independent
of environmental factors peculiar to particular individuals.) Conversely, network
development with traditional learning methods generally ignores the fact that real bio-
logical organisms learn within boundary conditions set by the organism’s genotype
and phylogenetically adapted by recombination, mutation, sexual selection, and envi-
ronmental pressures. The boundary conditions of traditional learning networks are set
not by the power of evolution but by human designers taking ‘educated guesses’ at
appropriate architectures, learning algorithms, and connection patterns. '

But it scarcely needs pointing out that real adult phenotypes are the product of both
ontogenetic and phylogenetic development. The living organisms we encounter every
day are genetically endowed at birth with a wealth of characteristics which evolution
has determined are beneficial for their survival and reproduction, but within the bounds
laid down by their genotypes they are also capable of adapting to changes in their
environment. They are capable of learning. Thus, insofar as the theoretical frame-
works offered by either the genetic algorithms paradigm or the traditional learning
paradigm claim to be biologically plausible, they are incomplete, and insofar as they
claim to be complete, they are not biologically plausible.
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2. An Alternative Framework

I suggest a broader theoretical framework within which artificial neural network
design mimics the natural features of both genetic coding and environmentally induced
adaptation by individuals. On this view, genetic algorithms should be applied to
genotypes which code not only for the standard parameters describing nodes, thresh-
olds, and connections (or simple dendritic growth for growing networks), but also for
characteristics of dendritic plasticity. These characteristics might include the learning
rate of a globally defined Hebbian [3] rule as well as a measure of the capacity for
growing new connections. The fitness function may then be applied (o a phenotype
grown nontrivially during a ‘learning phase’ in a dynamic environment. It might give
preference to phenotypes which adapt smoothly to environmental changes, such as a
motor control network which could not only manoeuvre a robot arm toward a given
point but could also adapt to avoid obstacles introduced into its path.

From artificial neural nets developed within this theoretical framework, I believe
we may gain some insight into the emergence of classical symbolic processing in real
intelligent organisms. I propose that evolution creates hybrid architectures of high
and low plasticity connections in which arrays of neurons with low plasticity connec-
tions might embed very simple classical processors such as basic logical connectives.
This view takes theoretical support from the idea that low plasticity subnetworks
implementing classical functions may be the most efficient ‘building blocks’ on
which higher plasticity distributed hybrid networks could rely. Given that genotypes
specify at least some, if not all, characteristics of dendritic growth (by virtue of speci-
fying the structures of cells themselves), I believe it is highly implausible that Nature
could have failed to exploit this elegant way of mixing the best attributes of dis-
tributed and (neurally implemented) classical systems.

This is not to say that genetic algorithms may only generate networks exploiting
classical processes, for this is clearly not the case. If adult organisms never had to
learn by experience, never had to remember information or respond to situations radi-
cally different from those which influenced the phylogenetic development of their pre-
decessors, genetic algorithms might have provided for the entire repertoire of
behaviour of adult organisms with nonlearning networks operating with any balance
of obviously symbolic or distributed principles. But in the real world higher organ-
isms are not entirely hardwired by their genotypes. I suggest simply that real biologi-
cal development yields networks of mixed plasticity and that in those portions of phe-
notypes which are hardwired, we may find embedded symbolic functions.

By way of example of what might be accomplished by deliberately mixing high
and low plasticity connections, in what follows I describe a motor control problem
together with a manually designed speculative prototype network meant to illustrate
some architectural principles which might be exploited by the automated development
theory I have described above. It is certainly inferior to what could be generated by
such a strategy, so I include it not as a solution to motor control problems but merely
as an example of a first step.

3. The Sample Problem
I am concerned with the problem of visually guiding some mechanical device to an

arbitrary point in space. This amounts to combining information about the present
visual image with information about the desired image in order to activate a motor
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system. Here we assume that the relationship between a given activation of the motor
system and its influence on the visual image is initially unknown but could be
described by a (hopefully simple) computable function. For this example, we also
assume that visual information has been pre-processed in such a way that the control
system is presented with an indication of, for instance, the present real coordinates of
the device together with its desired coordinates. The dimensionality of the problem
might be increased by also including the present and desired coordinates of more than
one coupled part of the mechanical device, such as both the target end and the elbow
joint. The details of the specific device under motor control do not concern us.
Instead, I would like to paint in broad strokes a picture of one possible neural architec-
ture for performing this type of control task.

3.1 Architecture

The network I propose works on the hypothesis that an unsupervised Hebbian
network provided with feedback about its level of success at performing a particuiar
task might approximate the capabilities of a supervised network learning to perform a
similar task. This principle is inspired by Rumelhart’s biologically plausible imple-
mentations of something similar to backpropagation and his recent use of this type of
network in motor control and so-called ‘mental mapping’. [4] Rumelhart’s networks
are primarily Hebbian but rely upon feedback from nodes producing a theoretical neu-
romodulator which regulates plasticity without affecting activation. The neuromodu-
lator is plausible, but it has yet to be identified in biological systems; the present
network is meant to perform a similar task without recourse to this modulator.

Rather than providing a plasticity-modifying chemical at a particular neural
junction, the present strategy is simply to provide additional excitatory input to the
two Hebbian nodes in question. In most networks using correlation rules to update
weights, such as that described in [5], high correlation between node outputs must be
combined with high present output frequency to achieve a maximal update to the con-
nection strength. Thus the strategy of providing additional excitatory input to the two
nodes increases the magnitude of the connection update. Of course this will also
influence the other nodes to which either of the two in question might be connected,
so the strategy is far from identical to the neuromodulator scheme.

(XNOR)

(always on)

Fig. 1. XNOR Function
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The network receives its feedback about performance from a zero plasticity sub-
network which provides a classical measure of the improvement in position caused by
the most recent motor activation. A rudimentary version of such a measure is the
XNOR function, implemented as shown in Figure 1 by perceptron-style units with all
or nothing thresholds set to .5.

However, since we require more information than a simple verification of whether
two units are either both on or both off, a more flexible measure is the function 1- IX
- Yl, implemented as shown in Figure 2, together with its output graph. Here the
nodes have zero thresholds and a continuous output response which can be read off
from the cross section where the graph meets either of the two vertical planes made by
the axes. I will refer to this simple network as a ‘convergence detector’; it may be
nonlinearised by altering the output function of the final node to match the cross
section of the desired graph.

1-1X-YI

(1-1X-Y1)

Fig. 2. Convergence Detector and Output Graph

In the complete system, depicted in Figure 3, convergence between the present
image and the desired image is measured by the detector A and convergence between a
previous image (thus the propagation delay) and the desired image by the detector B.
While each of these detectors has a number of output signals identical to the number
of dimensions of the image information, for simplicity only one output each is shown
here. The outputs of the two detectors are compared by single nodes with smooth
output functions and complete efferent connections to the control network which effec-
tively subtract the old convergence from the new in the case of the subtractor marked
C or the new convergence from the old in the case of D. The output functions of
these nodes must be scaled to amplify positive results: since we would expect sudden
very high improvements in convergence only rarely, it is important to magnify the
presence of even minor improvements to a significant level. The D node is unique in
that it represents a neuron which produces only inhibitory chemicals, but its efferent
connections are still updated according to the Hebbian rule in place. (Note that some
sort of arrangement with fixed afferent connections and plastic efferent connections is
necessary for communication between nodes with fixed connections and nodes which
are part of a learning network.)

The upshot of this system is that when the controlling network yields a motor
output which improves the convergence between the desired and the actual visual
input, all the nodes in the control network will receive additional excitatory input
from C, but only the connections with those which were firing will be strengthened.
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When the motor output worsens the convergence, all the nodes receive inhibitory
input from D, but again only the connections with those which were firing will be
strengthened.
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Fig. 3. Complete System

Additional excitatory input to a pair of firing nodes which are connected to each
other in the main network will contribute to an increase in the strength of the connec-
tion between them, whereas inhibitory input will contribute to a decrease in the con-
nection efficacy (or at least a relatively smaller increase). The interaction between the
inhibitory and excitatory inputs from the subtractors themselves and the influence of
this input on the connections between the nodes within the main network is meant to
be a primary mechanism affecting the system’s development.

3.2 Comments and»Shortcomings of the Architecture

Perhaps the most telling criticism against the system as it stands is that there is
no guarantee the main network will converge when it is trained upon a set of desired
images with a consistent environment and consistent motor actuator characteristics.
As I have stated, however, the architecture is intended primarily as an example of the
kinds of features which might emerge from the design theory I described above, and it
illustrates the application of a hybrid architecture to the feedback hypothesis. A more
subtle criticism is that complete efferent connections from the subtractors suggest that
in terms of reinforcement no discrimination will be made between nodes whose firing
was highly desirable for achieving a convergence improvement and those whose firing
was only marginally desirable; all nodes whose firing contributed to a positive change
in convergence are reinforced, while all those whose firing contributed to a negative
change are inhibited. Improvement of the network to remedy these deficiencies and
others awaits full implementation, testing, and detailed analysis.
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4. Discussion

I have outlined what I believe is the most powerful theoretical framework for bio-
logically plausible neural network design considered to date. I have given reasons for
broadening the class of neural network characteristics under the control of a genetic
algorithm as well as reasons for incorporating a ‘learning phase’ of ontogenetic devel-
opment and for applying the fitness function to the phenotypes thus produced. I have
indicated how this theoretical framework may allow us to view some phenotypes as
hybrid networks in which evolution has ‘discovered’ useful classical functions and
embedded them in low plasticity subnetworks. I have given an example of a problem
which could benefit from this type of approach and described a manually designed
sample network which might be useful for solving the problem.

For complex tasks, the capabilities of networks produced under this theoretical
framework may surpass those of most artificial networks either genetically created or
manually designed for ordinary learning. Since artificial networks are not constrained
by the boundary conditions of biological neurons operating in real space, such artifi-
cial networks may ultimately surpass the capabilities of similarly connected biological
counterparts. Given computationally simple correlational learning algorithms and
ontogenetic phases of a few thousand cycles or less, this type of neural network design
is well within the bounds of existing technology.

Already the networks which emerge from simpler genetic algorithms are extremely
difficult to analyse in terms of the functions of individual neurons. The architectural
subtleties made possible by the framework I have described may prove still more resis-
tant to functional analysis. This makes yet more pressing the need for ongoing con-
sideration of the problems created by automated generation of more and more capable
neural networks which we understand less and less.
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