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Stochastic model of odor intensity coding
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Abstract. We study how the concentration of an odorant is coded
by olfactory neuroreceptors using a two-point stochastic model.
This model describes the main variables involved (activation of
odorant receptor sites, receptor potential and firing frequency) and
gives their mean and variance. It accounts well for the basic
properties of olfactory neuroreceptors.

1. INTRODUCTION

Building biophysical models that explain the generation of the membrane
potentials is a classical endeavor of neurophysiology. Stochastic models of
neurons have been also intensively investigated [6]. Models of single neurons
are relevant in sensory physiology because intensity of stimulation (here odor
concentration) is encoded by the frequency of action potentials fired by first-
order neurons (neuroreceptors). By contrast, the quality of ‘an odor is a
property of the population of neuroreceptors, and the experimenter cannot
tell the nature of the odor from the recording of any single neuron (an
important exception is the neuroreceptor to sex pheromones in Insects).
Olactory coding begins by the binding of odorant molecules to receptor
proteins borne by the neuroreceptor dendritic membrane. Then a membrane
depolarization is evoked, called receptor potential. When this potential is
high enough, action potentials (spikes) are generated and propagated along
the axon to the brain [1]. Modeling the olfactory neuroreceptor has been a
neglected topic. The only reported effort to our knowledge has been made by
Kaissling and only a brief summary is available in [1]. This situation
prompted us to develop our own approach.

We model the olfactory neuroreceptor using a three-fold approach. First,
the dependency of the spike firing frequency on the concentration C of an
odorant is studied. Second, a stochastic approach is used to describe the
variability of the processes involved, a prominent feature in experimental
recordings. In our model, the variability results from the random
bombardment of the neuroreceptor by identical odor molecules. Third, this
model uses a two-point description of the neuron {3, 4], whereas most models
that describe the dynamics of interspike intervals (ISIs) model the evolution
of the membrane potential at only one point [6]. Here, we consider separately
the dendritic compartment and the initial segment of the axon.

2. GENERATION OF THE RECEPTOR POTENTIAL IN DENDRITES

2.1. Occupation and activation of receptor sites

There is only one odorant substance M at concentration C, and the
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neuroreceptor beats n single-site receptors R, either identical or belonging to
different classes. In both cases R is first occupied by M; then, if the
interaction is strong enough, R is activated; finally M is released. In our
simplification release is independent of activation [2].

Occupation and release. Each receptor is occupied and released
ixdependently of others according to the stochastic reaction schemes M + R

MR and MR & M + R, where the occupation parameter A is a linear
function of C. A receptor site occupied (respect. free) at time { has a
probability uAt+ o(At) (respect. AA?+ o(At)) of being occupied (respect.
released) in (¢, t+ A#]. The stochastic process giving the number of occupied
sites X, defined by these probabilities, is a birth and death process with
transition rates A,(i) = A(n— i) and (i) = pi, for i=0, 1, ..., n. The mean
number of occupied sites and its steady state values are

E(Xp(1)) = nha(l - exp( — t/a)) oo nAa ‘ (1)

where the number of occupied sites at time ¢t = 0 is 0 and a = (A + u)"!. The
variance of the number of occupied sites at time ¢ is

Var(X,(1)) = npda® — a (g — A) nhaexp(— t/a) — nA%a? exp(~2t/a) (2)

and its limiting value for ¢ — oo is nula®. In order to simplify the
computational problems, the process X,, with discontinuous trajectory can be
approximated by a diffusion process X* with similar statistical properties.
With a proper choice of the initial value of X}, its mean is (1) and its

varmnce lS
Var (X5(9) = nura®(1 - exp(-2t/a)). 3)

The variances (2) and (3) become identical for #—c0. Then Xq(t) reaches a
steady state which follows the normal distribution N(zla, nlpua®).

Activation. We assume that an occupied receptor AR can be activated to
AR* with probability p, independently of its past behavior. Then, all
properties of the process Y, that describes the number of activated sites at
time ¢ can be derived directly from those for process X,, by Y, = pX,,.

Maultimodalily of receptors. Most neuroreceptors are unspecialized and
likely bear several types of receptor sites. For m types of receptors with
frequencies n,, (n, + ... + By, = n), each type of receptor is characterized by
the triplet {/\J By P i=1, .., m}, witha, = (,\ + ). The total number
of activated sites’ Y, (1) is the sum over all s]ubsets of th’e number of activated
sites derived from (1) for any subset j. Then, the mean value of Y, is,

B(Yy(1) = Z Pl -em(=ta)) Z P @)

The asymptotic mean number of activated receptors under the condition that
).j—»oo for each j can be defined as the saturation level, L; it is

L= ]_Z_:p] 5 )
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L differs for neuroreceptors bearing different populations of receptor sites.

2.2. Receptor potential

When a receptor site is activated it triggers the opening of ionic channels
that depolarize the dendritic membrane. This receptor potential can be
simulated by a process Y = Y({) related to the number of activated receptors
Y, or Y}. In doing this the dependence of the contribution of each activated
receptor to Y on the location of the receptor and on the actual value of the
membrane potential is neglected. This simplification does not influence the
qualitative behavior of the model but it will have to be removed when
parametrization of the model is performed.

3. GENERATION OF ACTION POTENTIALS

3.1. Model of the axon initial segment

The one-dimensional models are based on two assumptions. The first is
that after spike generation, the membrane potential Z at the axon initial
segment (here called azonal potential) is reset, e.g. to the resting potential.
The second assumption, implicitly contained in the unidimensionality of the
models, is that the receptor potential Y is also reset after the spike.
Consequently, the ISIs are independent random variables. Whereas the first
assumption is well founded, because the falling phase of the action potential
is an active mechanism that restores the resting potential (here taken as the
zero level), the second one (resetting of the receptor potential) is unrealistic.
A simplified solution to this problem is to divide the neuron into two
compartments, the somatodendritic part and the initial segment, which
allows resetting Z without resetting Y [4]. We assume that Y depends only on
odor stimulation, not on Z, so that the dendritic ionic current and potential
are not affected by the spike generating mechanism.

The initial segment A can be described by a circuit with a generator, a
resistor R4, a capacitor C4, and a switch in parallel, which is the simplest
realistic description of a neuron membrane. Then, Z is given by the stochastic
differential equation C,dZ(f) + R, Z(t)dt= K(t)dt, with Z(1,) = 0, where
Z(ty) is the resetting potential and I'= K1) is the input current due to the
receptor potential. If a “slowly changing” stimulus is applied at time #; and
the switch is open, I flows across the resistor and charges the condenser, and
Z can be approximated in the form,

1= foeo(~ 0 = KP4 - o 178) @

where 7, = R,C, is the time constant of the axonal membrane. “Slowly
changing” means that the variation of I has been small during the charging
of the condenser, whose time scale is given by 7 4. The switch closes when Z
exceeds a certain threshold S (emission of a spike). The condenser discharges
and Z resets to 0 (end of the spike). Then the switch opens and the condenser
charges again; A is again submitted to the dendritic current and the process
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of spike emission can continue. In model (6), the voltage at A is reset after
the spike and then exponentially tracks the receptor potential. If Z(t) does
not exceed S for a long period, then the axonal and receptor potentials
become identical.

3.2. Firing ﬁeqﬁency

Let 4, ¢, ..., §; denote the moments when procws Z(t) reaches the
threshold S> 0 and their differences, A , the correspondmg
sequence of ISIs. From (6), the time dynamlcs of 5 startmg at time 1, is

2(t) = ¥()(1 - exp( —':A"‘)), ety ) Y =% (D)

The moment of the next spike L +1 is the realization of random variable

CThyy =inf{t> 5 2 2 S |2t 2 S, Ay+0)=0) (8

which can be rewritten, by using (7), into the form T}, 1=

=inf {Y(t)( —exp( ‘))> S| Y(ty = exp(f = k/u)} (9)

where Y is assumed to have a continuous trajectory (diffusion process). It
follows from (9) that the length of the next ISI depends on the actual value
of the receptor potential at the moment of last firing and thus on the length
of the previous ISI. This feature is the main difference between the partial
reset (two-point) model and those with total reset (one-point). If ¥(1;) is
very high then AI: is very short. If Y changes slowly with respect to tnme
constant T 4, the next ISI, A , will be also short with high probability. On
the other hand, if Ay is long, () = S and consequently the next ISI will
not be very short. For this reason the model produces positively correlated
sequences of ISIs and consequently coefficient of variation greater than 1, as
we verified by simulation (3].

Replacing Y{(?) in (7) by (4), we get the mean value of the azonal potential
Zy in the time between two consecutive spikes, ¢ € ({1, +1]

B(Z) =(1 - exp(- “‘)) {erpeft - eo(-159) ) o

This equation encompasses dlfferent types of activity according to C. Three
regions, without sharp boundaries, can be defined by the asymptotic mean
receptor potential. If it is high above the threshold Zp i A @ » S which
corresponds to a strong stimulation, the firing frequency f 18 "approximated
from (10) by solving the equation E(Z,(1)) = S

fl=-1, ln(l S/Z p]nJA]aJ) (11)

In this case the neuron fires rather regularly with fluctuations, related to
those of Y, around its mean, which are characterized by wvariance
Var(Yp(o0)). In the second region, characterized by condition

by p]nJA % & S, the firing pattern is Poissonian. Finally, in the inter-mediate
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region, where the asymptotic mean is close S, the characteristics of firing are
difficult to specify without simplification or simulations.

4. DISCUSSION

4.1. Mean bebavior of the olfactory neuroreceptor

Equation (11) shows how the firing frequency f varies with increasing odor
concentration C, A being proportional to C. For low C, f remains zero, then
rises to f; at concentration C, for which the mean receptor potential crosses
threshold S. Above C,, f is approximately linearly proportional to the
receptor potential (1) or (4). However, below C; spikes are also occasionally
generated because of the random fluctuations of the receptor potential. It can
be shown by simulation that the firing frequency resulting from noise
increases almost linearly from 0 to f [3].

Several properties found experimentally in real neuroreceptors are
predicted by our model. First, in both cases the plot of firing frequency vs.
log C is a sigmoid curve. In the case of neuroreceptors bearing only one type
of receptor sites, it is a logistic curve, and in the general case of m types of
receptor sites per neuroreceptor, it is a summation of logistic curves, which
may be also sigmoid. Second, the saturation levels (5), the slope of the
sigmoid curves at the inflection point and the sensitivity of the neuroreceptor,
defined by the abscissa of the inflection point, are all expected to vary in
neuroreceptors bearing different populations of receptor sites, in agreement
with observations.

4.2. Stochastic behavior of the olfactory neuroreceptor

Firing laws. Our model predicts other properties depending on the
stimulus intensity. For low asymptotic mean values of the receptor potential,
it generates spikes forming a Poisson process. When the steady state of 7 is
approximately at the same level as the threshold S, the model predicts that
the distribution of ISIs becomes similar to Gamma, Inverse Gaussian or
lognormal distributions. Finally, with increasing C, the intervals between
firings should become shorter and also more regular.

Serial dependency, both positive and negative, and coefficients of variation
larger than one, have been often observed in real neurons. The model predicts
positive serial dependency of ISIs. These features are not found in classical
models with total reset. Firing of spikes in bursts is frequently observed [5].
Bursting, exceptionally long ISIs and high serial correlations are related
phenomena. It can easily be accounted for by two-compartment models. If
the correlation time of Y, i.e. the time afier which the receptor potential is
no longer influenced by its previous values, is long (relatively to 74), the
trajectory of Y may be expected to change smoothly. When Y is high above
the threshold S, it stays there for a certain time and the model produces a
sequence of short ISIs, i.e. a burst. Similarly, when Y falls below S it yields a
very long ISI.

Spontaneous activily, i.e. spikes in the absence of overt stimulation, can be
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recorded from neuroreceptors. We have shown that the neuroreceptors
spontaneously fire bursts of spikes (not spikes), according to a Poisson
process [5]. According to our model this means that the neuroreceptors
alternate at rest between a state close to the resting potential (between
bursts) and a state close to the threshold (within bursts).

4.3. Perspectives

The model presented is based on numerous simplifications and several
factors have not been explicitly taken into account, such as detailed
biochemical mechanisms of transduction and detailed biophysical membrane
properties. Some of these factors can be easily fit in the model, whereas
others do not call for a new model but for extensions of the present one.
However, our assumptions lead to a basically correct account of the
neuroreceptor behavior, which suggests that essential features of the real
mechanisms have been retained.
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