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Abstract.We consider a model of a neural network where individual cells
interact only by releasing and receiving molecules of a neuromediator. We
show that such a system can realize the function of associative memory.
The mechanisms of learning involving neural plasticity are discussed.

1. Introduction

The neural systems of the brain differ significantly from the idealized networks of
formal neurons. Real neurons are surrounded by the medium that contains various
types of chemical agents secreted by the cells. The chemical composition of this
medium and the spatial distribution of the mediators in it are permanently changing.
These changes may influence the neural activity including the secretion process itself.
Hence, besides of the direct connections through synapses, the neurons can also
interact by generating and receiving different chemical signals.

If this view of a neural network is accepted, the central question is what might be
the role played by chemical mediators in information processing. It was conjectured
some time ago by Shepherd [1] that exchange by chemical signals can effectively lead
to the same kind of information interactions that is realized by direct synaptic
connections. Recently we constructed and examined several mathematical models [2-
6] of neural networks where direct synaptic connections were absent and the
interactions between neurons involved mediators (or messengers).

The first of these models [2,5-6] used addressable messengers which could act
only on the neurons with an address that coincided with the one carried by the
messenger. It was shown that, under a proper choice of the communication rules, this
system can emulate any activity of a formal neural network. In the second model [4-
6] each mediator was associated with a particular stored pattemn and the system had the
property of associative memory. In both of them diffusion of the mediators was
assumed to be so fast that their concentrations were maintained uniform in the
medium.

In the present paper (see also [3,6]) we investigate another model of a neural
network. Its principal difference is that it uses a single kind of a mediator while
retaining the potential to keep and to recall a large number of patterns. We formulate
further a possible learning mechanism based on the processes of neural plasticity.
The theoretical analysis of the model is supplemented by numerical simulations.
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2. The model

We neglect direct connections between neurons which might be realized by synapses.
Instead it is assumed that a neuron can only interact with the others through the
intracellular medium. At its terminals located on the axon, the neuron releases into
this medium the molecules of a mediator. This mediator diffuses in the intracellular
space and acts on the dendritic receptors of other neurons. We assume that the
dendritic tree of any neuron is strongly branched and has a very large number of
receptors. Then, in the simplest approximation, one can introduce the local density of
receptors of a given neuron which is described by a continuous function of spatial
coordinates. The axons are also assumed to be strongly branched. For every neuron,
we define its local continuous density A(r) of axon terminals where the mediator is
released. Thus, a neuron is pictured in our model by the clouds of its dendritic
receptors and axonic terminals.

In the brain there are dozens of chemical substances which act as neuromediators.
In our model, however, all interactions between the neurons are realized only by a
single chemical mediator. This simplification can be partly justified when we note
that the neuromediators found in the brain have very different life-times. Therefore
they are involved in the processes which are characterized by different time scales and
are thus sufficiently independent.We denote the local concentration of the mediator by
Q..

We suppose that the neurons (enumerated by index i) possess two types of
receptors, activatory and inhibitory. Hence the receptive field of a neuron is defined
by two distributions, i.e. by the local density R, ;(r) of its activatory receptors and by
the density R, ;(r) of its inhibitory receptors.

In the presence of the mediator, an activatory receptor increases the electric
potential U; of the ith neuron by a contribution that is proportional to the mediator
concentration () at the location of this receptor. Under the same conditions, an
inhibitory receptor decreases the potential U; by the amount proportional to 0. We
neglect the delays due to the finite speed of propagation of elecrical signals inside
neurons and assume that at time ¢ the electric potential of a neuron integrates over the
instantaneous contributions from all the receptors, i.e.

U,0 = [alR, ,(t) = Ry, (e)Q(x, 1)dr o

Here a is a positive coetticient.

We describe the dynamics of the neural activity in the simplest form, assuming
that the mean frequency v; of spikes generated by the ith neuron is a step-like
function v; = f{U; ) of the potential U;. The monotonous function f{U) vanishes at U
=0and sharply increases when a threshold U, is exceeded. At large values of U this
function reaches saturation. Below v; is called the activity of the ith neuron.

To complete the model, we provide an equation describing evolution of the
mediator distribution in the medium,

9010t = DV>Q - 10+ BY, F(U)A®) + Kr,0). %)
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The first term in the right side of this equation takes into account diffusion of the
mediator, the second describes decay of the mediator and its absorbtion by the cells
(neurons and glia). The third term decribes release of the mediator by the neurons at
their axon terminals. It is assumed here that the amount of the mediator reeleased by
each neuron is proportional to its instantaneous activity v; = f(U;). The last term
takes into account possible sources which might locally feed the mediator into the
system.

When distributions Ry ; (r), R,; (r) and A; (r) are fixed, equations (1) and (2) govern
time evolution of the mediator distribution Q(rf).

3. Associative memory"

With a proper choice of the spatial distributions of receptors and terminals of the
neurons comprising the system, it can keep in its memory a set of patterns. Such
patterns represent different spatial distributions of the mediator. Each prototype
pattern is uniquely associated with a particular neuron. If some initial disribution of
the mediator is applied, the system evolves into a stationary state with the mediator
distribution of the nearest prototype pattern. When this occurs, the neuron associated
with this prototype pattern becomes activated while all other neurons are silent (i.e.
their activities are vanishingly weak).

It was shown in [3] that, in order to keep in the memory a set of N prototype
patterns Q; (r), i = 1, ..., N, the spatial distributions of dendritic receptors and axonic
terminals of ith neuron can be chosen as

R,"(r) oc 5Q,‘(l'), . Ar) e Qg (r). 3

Here R; (r) = Ry (r) - Ry; (r) is the local difference in the densities of the activatory
and inhibitory receptors of the ith neuron and 8Q; (r) is the local variance for the ith
prototype pattern, defined as 8Q;(r) = Q;(r) - <Q;> where <Q;> is the spatial
average for this pattern.

The underlying mechanism of this behaviour is simple: If the receptive field R;(r)
of a certain neuron is closer approaching the presented pattern Q (r), its initial
activation is higher and, consequently, it begins to release the mediator at a higher
rate. But, according to (3), the spatial distribution of its axonic terminals repeats, up
to a constant component, the pattern of the receptive field. Therefore, the applied
pattern evolves towards the prototype pattemn kept by this neuron, until this pattern
is fully established in the medium. When several neurons become initially activated,
the competition between them starts. In its course, the neuron with the best fit
between its receptive field and the initially presented pattem suppresses the activity of
all other neurons and the mediator distribution, generated by this neuron, appears in
the system.
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4. Learning

The neurophysiological observations provide evidence that learning may be related to
neural plasticity, i.e. to the processes which involve growth (sprouting) of neurons,
establishing new synaptic connections and modifying the strengthes of already
existing ones. The last two effects, however, cannot play a role in the considered
model because the synaptic connections between the neurons are excluded here.

It is known that sprouting of neurons is controlled by trophic factors which
represent certain chemical substances. The best studied trophic factor is a protein, the
nerve growth factor (NGF). This protein stimulates directed sprouting of axons and
dendrites by control of assembling the microtubules. The axons and dendrites adjust
their directions of growth to the concentration gradient of NGF. According to a
popular hypothesis, the peripheral target cells produce NGF which directs sprouting
of axons to their targets. Hence, sprouting represents a chemotaxis-like process (with
the difference that not the entire cells but only their parts move in the direction of a
chemical gradient).

Although there is no direct evidence, it seems plausible that motion of receptors
and of mediator terminals on the membranes of neural cells may also be controlled by
chemical gradients. This would mean that such receptors and terminals are involved
in chemotaxis (confined however to the cellular membrane of a given neuron).

As already noted, our simple model is not intended to give a complete description
of a real physiological system. Since we want only to demonstrate the possibility of
such mechanism of learning, we assume for simplicity that the mediator itself is a
substance which controls all plastic changes in the neurons and their sprouting.

In our approach any neuron is characterized by a set of three fields giving the local
densities of dendritic receptors and axonic terminals. These individual receptors and
terminals can be viewed-as some particles which are distributed over the medium.
Such particles can move, either together with a sprouting axon or dendrite to which
they belong, or over the membrane of a resting neuron. Abstracting from the details
of such motion, we describe it phenomenologically as chemotaxis of these particles
controlled by the mediator gradient.

We assume that axon terminals tend to drift in the direction of the decrease of the
mediator concentration. The drift occurs only when a given neuron is active.
Dendritic activatory receptors drift in the direction of the increase of the mediator
concentration, if a given neuron is active, and in the opposite direction if its is
currently passive. The drift is superimposed on random diffusional wandering of these
particles through the medium. As for inhibitory dendritic receptors, we assume that
they are uniformly distributed in the medium and their distribution is not changed in
the process of learning.

The chemotaxis-like motion of activatory dendritic receptors and axonic terminals
is described by equations

R ;! & = DV*R , - div(p,(v)R, gradQ) @

0A; 1t = D,V A, - div(p, (v,)A,gradQ). ©)
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Here D; and D, are the coefficients that characterize the rates of undirected diffusion-
like spreading of dendritic and axonic clouds in absence of the mediator gradient.
Coefficients p; and p, characterize plastic sensitivity of dendrites and axons to
mediator gradients. They depend on the current activity v; = f{U;) of a given neuron,

p(v)=k;-0) , P, (v =k, . ©

Thus, the activatory receptors drift in the direction of the mediator increase when
activity of the neuron exceeds threshold 8. When v; < 0 the direction of their drift is
reversed. The axonic terminals always drift only in the direction of the gradient.

The leamning procedure is the following. Suppose that we have a set of different
distribution patterns of the mediator and want to teach the ith neuron to recognize
only a particular pattern characterized by the mediator distribution Q; (r). Then we
create this mediator distribution in the medium and maintain it fixed for some time.
During this time we keep the ith neuron in the active state (with v; >8) and all
other neurons in the passive states. Under these conditions, the activatory receptors of
the ith neuron drift towards the areas where the mediator concentration is maximal,
while the activatory receptors of all other neurons tend to leave such areas. The
axonic terminals of the ith neuron go into the regions with the higher mediator
concentrations whereas the terminals of other neurons do not perform any dn'ected
motion.

The training cycle consists of application in turn of all prototype patterns, each
kept for a short time interval to produce changes in the dendritic and axonic fields. It
is expected that after repetition of many training cyles the system acquires the ability
to recognize and reproduce stored patterns.

5. Numeric simulations

To test the efficiency of the learning procedure, numerical simulations were
performed In the first of them we trained the system, consisting of two neurons, to
recognize patterns which represented letters L and U. The details of this simulation
are ngen in [3]. After the learning procedure was finished, we used this system to
recognize the prototype patterns U or L in the presented pictures. The applied pattern,
which was used to create the initial mediator distribution, represented a strongly
distorted letter U . We were able to see how the missing elements appeared and the
superficial elements faded out with time. The final mediator distribution
reconstructed the full prototype pattern.

The second computer experiment (see [3]) differed in the number of patterns that
were learned by the system. The set of the prototype patterns consisted now of four
digitazed photographs of different human faces.The leamning procedure which was
employed in this simulation has been shghtly modified.

As noted above, the equations governing evolution of axonic and dendritic
distributions in the process of learning include diffusion-like terms. These terms
describe undericted sprouting of neurons and random wandering of the receptors and
terminals over the cellular membranes. The rates of such random spreading are
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characterized by two diffusion constants D; and D,. The presence of random motion
is essential for efficient learning.

Suppose that initially the axonic and dendritic distributions are localized inside a
certain spatial region. Then, in order to produce distributions that correspond to the
prototype patterns occupying larger space regions, the initial clouds of receptors and
axonic terminals must spread over the medium. However, it would be very often
found that such spreading could not result from the drift along the mediator gradients.
Indeed, to reach a distant region where their local maximum should be established,
the receptors and the terminals must first pass through the regions where the local
mediator gradients might be looking in the opposite direction. Arriving into such
areas can occur only by chance, i.e. as a result of random sprouting.

At the initial stage of learning the diffusion constants should be sufficiently large.
The intensive random initial sprouting allows the dendritic and axonic clouds to
spread over the medium and to reach the areas where local maxima of receptive and
generating fields should be later established. On the other hand, random spreading
smears the details of patterns. If the diffusion constants are kept large, the evolving
dendritic and axonic fields would catch the rough features of the learned patterns but
would not be able to resolve the fine structure of these images. :

To satisfy both conditions, a procedure similar to the technique of simulated
annealing has been used in the computer experiment. At the initial stage of learning,
higher values of the diffusion constants D; and D, were chosen. They were then
gradually diminished in subsequent training cycles so that the finer details of the
digitazed photographs have been learned.

Thus we have shown that a system of neural cells interacting only by release and
reception of a single mediator substance is already able to perform complicated tasks
of information processing and that the mechanism of learning based on neural
plasticity can operate even in absence of direct synaptic connections between the
cells.
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