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Abstract. We develop a neural network model based on a description
of spike dynamics modulated by synaptic conductances. The variables
are endowed with realistic physical units and plausible numerical values.
This allows to reach both qualitative and quantitative significance. At
the same time, the model is kept simple enough to enable its application
to the study of collective behaviors among large populations of neurons.
The model is used to investigate the conditions for the derivation of a
neuron transfer function for firing rates. Then, a reduction to a network:
model involving firing rates instead of spikes is performed. The spike and
the rate models are compared to describe equilibrium as well as dynamic
network properties, and differences in the results of the two descriptions
are pointed out.

1. Introduction :

Ten years after the two seminal papers by Hopfield [1] has come the age of what
is sometimes called second-generation neural networks. The two Hopfield papers
constituted a landmark in neural modeling. Based on a few simple but cardinal
properties belonging to biological neurons (threshold nonlinearities, high con-
nectivity, through plastic couplings), they demonstrated that, at the level of a
population of neurons, collective behaviors emerged that could form the support
of information processing abilities (attractor dynamics for memory processes).
Models derived from Hopfield’s work have received considerable attention lead-
ing to deep understanding of many of their properties [2]. To follow on the
same path, more and more models are now considered that incorporate more
realistic elements in the description of neurons, while keeping the emphasis on
the investigation of collective behaviors among large networks, and interpreted
in terms of information processing. In this trend, we discuss here a neural net-
work model based on a description of spike dynamics modulated by synaptic
conductances. We pay special attention to treat the parameters of the model,
not as mere mathematical variables, but as genuine physical quantities endowed
with realistic units together with plausible numerical values. This model is used
here to investigate different issues of importance in neural network modeling,
and especially the comparison between descriptions based on spike dynamics or
on firing rate dynamics.

2. A neural network model with spike dynamics

For a neuron i, we introduce G;; the membrane conductance in a postsynaptic
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region j. Gj; varies with the presynaptic activity Ej(t) that represents the train
of spikes impinging on the synapse j endowed with a synaptic efficacy w;;. We
model this variation as a discrete first-order low-pass linear system, that we write
for the dimensionless parameter gi; = Gij/Gm, where the constant G, is the
total conductance of the neuron membrane at rest:
. At At
9ij(t+ At) = (1 = —)gij (1) + ——wi; Ej(2) - (1)
3 s
Changes in membrane conductance due to many synapses j produce a vari-
ation of the membrane potentiel V;(¢) of neuron %, that we model as:

At
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The zero reference for the potentials is taken at the resting potential of the
~ neuron. Vieyj is the reversal potential of synapse j to neuron ¢; it is positive
~ (i.e. above the resting potential) for an excitatory synapse, and negative for an

inhibitory synapse.

If the membrane potential V; reaches the threshold V;j, a spike is fired by

neuron i. The output activity of neuron i is described by a variable S;(t) that
evolves according to:

If Vi(t+At)>Vin then Si(t+At)=1, Vi(t+At)=0;
else S;(t+ At)=0. 3)

It is then possible to define the total synaptic current I; to neuron i, as:

L(t)=Gm Zg.-,-(t)[Vm,.-j -Vi(@®)]. (4)

We pay special attention to assigning realistic values, at least in order of
magnitude, together with physical units, to the parameters of the model. For
the membrane time constant we take 7,, = 10ms. In biological neurons, the
synapse time constant 7, can vary from below 1ms to above 100ms; for this
study we chose 7, = 10ms. In these conditions, we take for the iteration step
At = 1 ms € 7, and 7. This At is of the order of the absolute refractory period
T, of a neuron, and, through eq. (3), ensures that no more than one spike can
be emitted by a neuron within a refractory period. The threshold Vi, is 20mV
above the resting potential. For an excitatory synapse Viev,ij i8 Vexe = T0mV
above rest, and Visn = —10mV for an inhibitory synapse. E;(t) and S;(t) are
dimensionless discrete signals that assume values 0 or 1 to represent the absence
or presence of a spike at time ¢. According to eq. (1), the synaptic efficacy w;;
is also dimensionless. A critical issue is to propose a meaningful quantitative
evaluation for this parameter. For this purpose, we rely on the typically plausible
situation that follows. We assume that, on an excitatory monosynaptic pathway,
when the presynaptic neuron j is firing at its maximum rate (E;(t) = 1, Vt),
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the postsynaptic neuron i will just reach the firing threshold (asymptotically),
provided that the synapse w;; is at its maximum of efficacy wmax- Then, eq. (1,
2) lead asymptotycally to the relationship (Vrev,ij — Vth)Wmax = Vin, from which
we estimate wmay = 0.4. Finally, for the membrane conductance at rest we take
Gm = 10nS. '

A first assessment of the model can be obtained by the computation of its
impulse response, that is, the change in the postsynaptic membrane potential
Vi(t) produced by a single presynaptic spike. This quantity is experimentally
ineasurable, and constitutes what is known as a unitary postsynaptic potential.
Figure 1 represents a computed unitary postsynaptic potential together with
a typical experimental one, and shows good agreement, both qualitative and
quantitative, between the two. :
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Fig. 1. Unitary excitatory posf;synaptic Fig. 2. Neuron transfer function: (a) mea-
potential: (a) computed with the model, sured with the model with r», = 100 ms, (b)
(b) experimentally recorded. analytical approximation of eq. (7).

3. Derivation of a transfer function for the firing rate

A question that can be addressed with the model is the derivation of a transfer
function for the neuron firing rates. This issue is of interest in neural modeling.
First, because a sigmoid is often used in place of this transfer function, but this
sigmoid is postulated rather than derived from underlying mechanisms; in par-
ticular, this raises difficulties to assign meaningful values to the parameters of
the sigmoid (its slope and threshold). Second, because the conditions of exis-
tence of such a transfer function are themselves questionable. Its use implicitly
assumes that the mean output activity can be deduced from the sole mean input
activity, yet it is known that with an arbitrary nonlinear input-output relation-
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ship, the first statistical moment (the mean) of the output, generally depends
not only upon the first moment of the input, but upon all its moments.

At time ¢, we define a mean value Z(t) of a signal z(t) over a time horizon
T, through:

At At
T)=(1-—)z(t - At)+ —=2(2) . b)
(1) = (1- T0)a(t - A + ha() )
Equation (5) maintains an exponentially weigthed mean of the form:
At t—t
Z(t) = — t') exp(——) . 6
W=7 3 s)ew(-—5) (6)

This type of mean exhibits several advantages. From a computational stand-
point, it is accessible through a first order recursion. From a physical standpoint,
it is the natural mean that is implemented by any (ubiquitous) first-order low-
pass linear system with time constant 7, > At; as such it is thus “computable”
by the neuron, when its membrane for instance is approximated by a leaky
integrator.

The firing rate of neuron i at time ¢ is then defined as S;(t), and we examine
its dependence upon the mean synaptic current I;(t). Neuron ¢ has been driven
with input spike trains E;(t) with different independent stationary statistics
(Poisson or Gaussian interspike times). The resulting means S;(t) and T;(t)
were evaluated. We found a relationship between S;(t) and T;(t) that appears
largely independent of the statistics of the inputs Ej(t), and which is depicted
in fig. 2a.

The result of fig. 2a tends to support the possibility of a transfer function that
relates input and output first moments, independent of higher-order moments
of the input. This outcome is not a specific property of the neuron nonlinearity,
but rather it appears to be related to what we can call the central limit theorem
of stochastic point processes. This theorem states [3] that, under not too re-
strictive conditions, a superposition of a large number of independent stochastic
point processes (used as models for spike trains) tends to a Poisson process. The
Poisson process has only one independent statistical moment. Consequently, in
conditions where the input spike trains to a neuron are independent, and when
they are in sufficient number (it is usually the case to reach the firing thresh-
old of the postsynaptic neuron), then their superposition tends to approach a
Poisson process, and as a result, independent influence of moments of order
above one tends to disappear. We have verified that for the results of fig. 2a,
the synaptic current I;(t) itself, generally displays negligible dependence upon
the variance of the input trains E;(t) provided that they superpose in sufficient
number to produce I;(t). Therefore, in conditions where the central limit the-
orem operates, the possibility of extracting an input—output transfer function
Si(t) = fct[T;(t)] relating first moments only, seems to be justified. In contrast,
when these conditions break down, there is no a priori justification for a fixed
input-output relationship between first moments only. With highly correlated
input spike trains, we have observed that the output firing rate S;(t) may indeed
bear dependence upon higher-order moments of the input.
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Conditions where the central limit theorem applies may often be plausible in
neural networks. However, they may not be of thorough validity. Futhermore,
behaviors of individual spikes may sometimes be critical for the function of
neural assemblies. These points have to be born in mind when developing neural
network models where firing rate dynamics with input-output relationship on
means, are used in place of individual-spike dynamics.

Under certain assumptions, it is possible to derive an analytical expression
that approximates the input-output neuron transfer function [4], and that can
be cast into the so-called Lapicque form [5]:

&l

=0 if Ti<hn,

= 1 if T (7
T 1= (tm/T)In(1 = I/ L) it Li> T

Ul

with I, = G Vin- Equation (7) defines a neuron transfer function S = I( 7,-)
that is depicted in fig. 2b for a refractory period T, = 1ms. Other models use a
sigmoid for this transfer function. '

4. Reduction to a model for firing rates

In order to derive a model describing the operation of the network only in terms
of neuron firing rates, we shall linearize the previous equations. We approxi-
mate, in eq. (2) and (4), [Viev,ij — Vi(t)] simply by Viev,ij. This simplification
suppresses the possibility of nonlinear interactions between incoming spikes. We
then deduce an equation that governs the mean synaptic current to neuron i,
that reads: , ‘ ,
T+ At = (1- 20)T0) + 2 1 W), (8)
s .

i

s

with, for an excitatory synapse W;; = wij X Vexc/Vin, and for an inhibitory
synapse W;; = wij X Vian/Vin.

The output firing rate follows through the use of an input-output transfer
function for the neurons S;(t) = f[I:(t)], as given by eq. (7). In a network, the
neuron inputs E;(t) are formed by the outputs S;(t).

5. Dynamic versus equilibrium properties

We have used separateley the model with spikes of eq. (1)~(3) and the model
with rates of eq. (8), (7) to describe a situation that can be viewed as a phase
transition in a neural network. In the model with spikes the temporal means
are explicitly computed on the variables S;(t), and they can then be compared
to the variables 5;(t) as they are produced by the model with rates.

A fully connected network of N = 100 neurons, is constructed with N 2
excitatory synapses w;; which are randomly drawn with uniform probability
out of the interval [0, wo], with wg a control parameter. We define an average
activity of the network at time ¢ as (S;(t)) = N~! Eiil?;(t). This average
activity (S;) is computable (altough differently) in the model with spikes as well
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as in the model with rates, and it can be interpreted as an order parameter.
Both models are initialized in a state with {5;(0)) = 1/2, and the network is
let to evolve. We observed that, for wp small, the network evolves to a final
state with (S;(+00)) = 0 (disordered phase). For wy large, the network evolves
to a final state with (S;(+00)) > 0 (ordered phase). The transition between
disordered and ordered phases occurs at wy = w,.

We found that the critical value w, turns out to be different in the models
with spikes (w. = 0.33) and with rates (w. = 0.14). Different also are the relax-
ation times that are required, at a given wg > w,, to reach the equilibrium state
(Si(+00)) > 0 (of the order of 20ms in the model with spikes, and about 10
times larger in the model with rates, for wq just above w,). It is in fact not too
surprising that these parameters that characterize critical or dynamic phenom-
ena are predicted differently by a model with spikes or by a model with (mean)
rates. But in addition, equilibrium properties, namely the value of (S;(400)) > 0
recorded at a given wp > w,, come out different. For wy just above w, we have
(Si(+00)) = 1 in the model with spikes, and (S;(+00)) = 0.56 in the model with

rates.

6. Conclusion

The neural network model that we presented here, although neglecting many
aspects of neuron functioning, is detailed enough to convey both qualitative and
quantitative significance. At the same time, it remains simple enough to allow
the study of collective behaviors among large populations of neurons. It is spe-
cially useful under the discrete form adopted here, that leads to direct computer
implementation. We believe that such a model provides a good compromise for
many investigations on neural networks, with both qualitative and quantitative
prospects. As illustrated here, it can help to assess the derivation of rate models,
and it points to discrepancies between network properties when described with
spike or rate dynamics.
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