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Abstract: Ackley, Hinton and Sejnowski introduced a very interesting
and versatile learning algorithm for the Boltzmann machine (BM). How-
ever it is difficult to decide when to stop the learning procedure. Exper-
iments have shown that the BM may destroy previously achieved results
when the learning process is executed for too long. This paper introduces
a new quantity, the conditional divergence, measuring the learning success
for the inputs of the data set. To demonstrate its use, some experiments
are presented, based on the Encoder Problem.

1 Introduction

The Boltzmann machine (BM), introduced by Ackley, Hinton and Sejnowski in
[Ack 84] is one of the most interesting neural networks. This paper first sum-
marizes the basic concepts of the BM and gives in chapter 2 a short description
of the learning algorithm, which was also introduced in [Ack 84]. Chapter 3 an-
alyzes the convergence behavior of the algorithm and introduces a new quantity
which makes it possible to decide when to stop the learning process.

Let U = {u3,...,u,} denote the set of units of the BM which are considered to
be binary. Thus one can specify a mapping & : {uy,...,un} — {0,1} which is
called a configuration. The space of all possible configurations is denoted by R,
clearly |R] = 2". A weight w;; is assigned to the edge between units u; and u;
(note that wi; = wj;). The loop of unit u; has the weight w;;. An edge is said
to be activated if the two corresponding units have the value ’1’. The energy E
is defined by:

n 3
E(k) = =Y > wijk(ui)k(y;) (1)

i=1j=1
The task of a BM is to find a configuration of minimal energy which is done by
the simulated annealing algorithm (see for example [Aar 89]).
Aarts and Korst have shown in [Aar 89] that the BM converges for a fixed
temperature T to a stationary probability distribution ¢x(7T") over the space
R of all possible configurations as time (i.e. the number of suggested state
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ky 10 10 0 -20

0o ky| 01 01 1 -35
ks | 10 10 1 15

ky| 01 01 0 -10

s ks 11 11 0 10
ks | 11 11 1 25

kz | 00 00 ] 0

e . o k] 00 | 00 1 5
ks | 10 o1 0 -15

ko | 10 01 1 -10

Figure 1: Solution to the 2-1-2 encoder problem

transitions) goes towards infinity. If the BM chooses configurations due to this
distribution it is said to be in equilibrium. q(T) converges for T — 0 to the
uniform distribution over the set of configurations with minimal energy (see
" again [Aar 89]).
For realizing classification problems on the BM it is necessary to split the set
of units U into three disjoint subsets Uy, Uo and Uy for the input, output and
hidden units (note that Uy = @ is possible). An inquiry to the BM is made by
clamping the input units and executing the simulated annealing algorithm only
for the hidden and the output units. The classification problem for a given BM
can be described by an environment V C Rzo where R;0 is the space of all
possible input/output configurations.

Example 1.1 The task of the n-k-n encoder problem, introduced in [Ack 84]
is simply the following: there are n input and n output units. If the ith input
unit is on and all other inputs are off, the same should happen to the outputs.
This problem is trivial, if the inputs are directly connected to the outputs. But
with a ’bottleneck’ of k < n hidden units and edges only from the inputs to the
hidden units to the output units, it is interesting to see if the learning algorithm
can find a solution, since one can easily show that there exists a solution with
k = [logn]. Figure-1 shows a possible solution for the 2-1-2 encoder problem.
Fixing 10 (01) at the inputs results in k; (k;) as the global minimum for the
energy. If no units are clamped then &, is the global minimum.

2 The Learning Algorithm

The task of a learning algorithm is to find a proper weight constellation for
realizing a desired input/output behavior specified by a given environment V.
This chapter summarizes the learning algorithm introduced in [Ack 84] using a
slightly modified syntax.
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The algorithm generally distinguishes two phases: In the plus phase the in-
put/output units are clamped according to a given probability distribution q;:m
over the input/output configurations for the environment V. Usually all ele-
ments of V are chosen with equal probability 1/|V|.! In the minus phase all
units may change their state and one considers the probability distribution gz
of the BM reached by simulated annealing.2 Since only the input/output con-
figurations kjo are of interest, the probabilities of configurations with same
kro but different hidden unit configuration kg have to be summed up. Thus
U0 = DkmeRy k1o, Where Ry denotes the set of all possible hidden unit
configurations and kro g the configuration with input/output-configuration k1o
and hidden unit configuration kg.

It is now possible to measure the distance between these two distributions by a
well known quantity from information theory:

Definition 2.1 Given an environment V and the two distributions ¢* and ¢~
over the input/output configurations. The divergence G is defined as

+
Gi= 3 gl ze ©
kio€R10 %0

G equals zero iff q,cto = Gy, for all kro € Rro and is greater than zero oth-
erwise. For a proof see [Aar 89]. Thus the aim of the learning algorithm is
the minimization of the divergence. Since g, only depends on the weights
(seen away from T') and qz'm is given by the environment, G can be minimized
by weight modifications. Let p?'j denote the activation probability of the edge
between unit u; and u; when the input/output units are clamped by the en-

vironment. p;; is the corresponding probability for the case that no units are
clamped. In [Ack 84] it is shown that

oG 1 -
5;{; = "T(P?j - P.'j) (3)

G can be decremented by moving in the opposite direction of the gradient vector.
This results in the following learning rule for modifying the weights:

Awij = o(p} — pj;) (4)

where ¢ > 0 specifies the amount of weight change. The three steps of plus and
minus phases for estimating p}; and p;; and then changing the weights by (4)
are called a sweep and executeci repeatedly by the algorithm.

When applying the learning algorithm, it is in many cases better to change the

1Since it is not possible for the BM to realize that some configurations have probability
zero, one adds some noise to the clamped elements from V.

27 is assumed to be arbitrary but fixed, thus the dependency of g from the temperature is
not considered anymore.
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weights by a fixed constant:

B8 ifp;"é-—p,-’j>0
Awij=¢ 0 ifp-p;=0 (5)
B ifpf—p5 <0

For a motivation of this rule see [Ack 84], [Der 84].

3 The Conditional Divergence

For several reasons it is important to recognize as early as possible when the
learning algorithm has converged; i.e. it can make the correct input/output
associations: Since the algorithm is very time demanding, it should not execute
more sweeps than necessary. It can also happen that the algorithm, once hav-
ing converged, can again destroy its achieved learning results by ”overlearning”.
This phenomenon can be caused for example by big weights leading to a poor
performance of simulated annealing in the plus and minus phase of the algo-
rithm.

The learning algorithm uses several parameters. There is not much known
about how to choose them. Usually this is done by trial and error. In order
to make systematic experiments about the influence of the parameters on the
learning success it is necessary to have a stop criterion as precise as possible.
In most cases one simply uses the following stop criterion: after every sweep
all input patterns are clamped at the input units and after executing simu-
lated annealing the output units are compared with the desired output. Due to
the stochastic nature of simulated annealing this has to be done several times.
([Ack 84],[Low 89},[Pet 87]) ‘

In [Aar 89] the following stop criterion is suggested: every edge tests after every
sweep, if for a given ¢ > 0 : |p;§ — p;;| < e. If this condition is satisfied
for some succeeding sweeps, then the corresponding weight will be no longer
changed. The algorithm is stopped when all weights have stabilized. The ad-
vantage of this stop criterion is that every edge can locally decide for how long
its activation probabilities have to be estimated. However several experiments
have shown that it-may happen that despite of a learning success not all edges
stabilize, some edges can show an oscillating behavior.

It seems reasonable to use G as a stop criterion. But due to the following reason
G is often not minimized: for minimizing G it is necessary that ¢~ converges to
the distribution ¢t of the patterns to be learned. Usually the BM is not able
to reach this, although it is able to make the correct input/output associations.
Example 1.1 showed a good solution for the 2-1-2 encoder. However G = 6.813
since g, ~ 3-10~7 and ¢z, ~ 1.0.

This motivates weakening the demand that G = 0 and introducing a new quan-
tity. It should be sufficient to consider in definition 2.1 instead of ¢~ the proba-
bility of an output configuration in equilibrium when clamping a pattern of the
environment at the inputs. In doing so, the probability of this pattern within the
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Figure 2: Comparison of G and G

environment also has to be taken into consideration. This leads to the following
definition.

Definition 3.1 Let P be the set of input patierns from the environment V,
kr (ko) an input (output) configuration and Ro the set of all possible output
configurations. The conditional divergence is then defined as

4
Gi= 3 Y gl ®

k1€P k0RO Yok Tks

where Qo ks denotes the conditional pro‘bability for getting ko in equilibrium at
the output units when ky is fized at the inpul units.

In example 1.1 Qeolks equals for k1 and ky 0.992 respectively 0.999. Since the

two input configurations for k; and k2 in V have equal probabilities of 0.5 one
finally gets G = 0.0003.

Example 3.1 During the learning process for the 3-2-3 encoder G and G were
calculated after every fifth sweep, which is shown in figure 2.3 As one can see,
G is not minimized here. After 70 sweeps G is constantly 0. Additional tests
have shown that after 70 sweeps the BM is for the first time able to answer all
questions correctly.

The big changes of G can be explained as follows: as mentioned above it is very
difficult for the BM to reach a uniform distribution among the patterns of V.
Thus p* often differs from p~ and the weights are changed resulting in changes
in G.

Figure 3 shows for the same environment that learning too long may result in
a degradation of the performance. One can see that the stabilization, which
is reached after about 70 sweeps is again destroyed after approximately 450
SWeeps.

3The parameters were chosen simular to the ones described in [Ack 84] for the 4-2-4 encoder.
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Figure 3: Learning for a long period of time
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Figure 4: G with proportional weight changes

It is obvious how to use G as a stop criterion: after every ith sweep G & 0 is
tested.* If the weights are changed by equation (5), then up to the learning
success the weights will change from sweep to sweep considerably. After the al-
gorithm has converged the conditional probabilities of the output configurations
will not change anymore.

Problems may arise if the weights are changed proportionally by rule (4). For
a safe convergence o-should be chosen small, resulting in small changes of the
weights and thus of G. Figure 4 shows for the 3-2-3 encoder why it is difficult
to use G as a stop criterion here. It should be finally mentioned that the big
computational effort for calculating G, which is exponential in the number of
units can be easily reduced by computing the terms of the sum in equation (6)
in parallel.

4During the calculation of G the use of large numbers may be necessary, so due to numerical
errors a test for G = 0 does not make sense.
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