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Abstract: This work presents the empirical results of the application of
High-order Boltzmann Machines (HOBM) to the so-called Monk’s
problems. High -order Boltzmann Machines with discrete state units
(non-binary units) are also introduced and applied.

0 Introduction

The Monk’s problems [1] have been used as a benchmark for the evaluation of a
bread spectrum of Machine Learning algorithms, mostly algorithms for the
construction of classification trees, but also some neural network algorithms (at least
Backpropagation and Cascade Correlation) have been reported. This work can be
assumed as an extension of [1] to include High-order Boltzmann Machines (HOBM)
(with binary and discrete state units) to this comparative report. All the experiments
were performed upon the original data obtained via remote ftp from the public
directory referred in [1].

High-order neural networks are receiving more attention in recent times [9]. Classical
references of Boltzmann Machines (BM) are [6,7]. The first hint of the possibility of
defining HOBM was in [8], but up to now little attention has been paid to them. In
2] we have shown that HOBM with binary (0,1) units (1) can be trained with the
same algorithm than conventional (order 2) BM, (2) if they are completely connected
they can arbitrarily approximate any probability distribution in the space{0,1 W, and
(3) if not completely connected the order of the connections determines the degree of
fitness that can be obtained. Besides that, in [3,4] we have explored the application of
the BM to the resolution of the SAT problem. It is clear work that high order
connections with 0-1 extreme units can be interpreted as AND clauses. This
interpretation allows in the present work to define "a priori” topologies fitted for each
of leamming problems, deduced from their logical statement. Obviously, these "a
priori" topologies are usually unknown, being one of the tasks of learning algorithms
to uncover them, but they serve two purposes in our experiments: (1) to evaluate the
Weight adaptation algorithm without "topological interferences” and (2) to evaluate
the ability of the learning algorithm to uncover them . For non-binary HOBM the "a
priori” topologies correspond to structures that give the appropriate maxima of the
consensus function. (We perform consensus maximisation as in [7]). Section 1
introduces the Monk’s problems. Section 2 shows the results of applying binary
HOBM to them. Section 3 introduces HOBM with discrete state units. Section 4
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shows the results of their application to the Monk s problems. Finally, section 5 glves
some conclusions and further work

1 The Monks problems

The Monks problems were defined in [1] over an artificial robot domain, where each
robot is described by six discrete variables: '

x1 : head_shape € {round, square, octagon}

X7 : body_shape € {round, square, octagon}

x3 : is_smiling € {yes, no}

X4 : holding € {sword, balloon, flag}

x5 : jacket_color € {red, yellow, green, blue})

Xg : has_tie - € {yes, no}
Each learning problem is defined by a logical expression involving those variables,
that defines the class of robots that must be discovered by the learning algorithms.

~ (Monk’s problems are two class problems). Training and test data are produced

following the logical definitions. The test data are the class assignment to the whole
space (432 feature vectors), train data are random subsets of the test data. The
methodology used in [1] consists in the elaboration of the model using the train data -
and testing it against the test data. The results reported for each learning algorithm
are the percentage of correct answers to the test set. The logical definition of each
problem follows:

M; is defined by the relation: (head_shape = body_shape) or (jacket_color = red)

M, is defined by the relation: Exactly two of the six attributes have their first value

M3 is defined by the relation: (jacket_color is green)and holding a sword) or
(jacket_color is not blue and body_shape is not octagon).

M1 is a normal disjunctive form, and it is supposed to be easily learned by any
symbolic algorithm. M3 is close to a parity problem, difficult to state as a DNF or
CNF. Finally, M3 contains a 5% noisy data in the training set, and is intended to

evaluate the robustness in the presence of noise. '

2 Results with binary HOBM

“First we will introduce the notation used: A HOBM is described by the triplet
(U,L,W), being U the set of units and L the set of connections. Each connection AeL.
is a subset of U. The order of a connection is its cardinal, and the order of the HOBM
is that of its higher order connection. W are the weights associated to the
connections, and can be formulated as W:L—R. The consensus function to be
maximised by the HOBM, where k(u) is the state of unit u in the global configuration

k, is. .
C(k)= me [T k(u)
uei '
In our application to the Monk’s problems the set of units is built up as follows:
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Ul =U;uU, UU; U {ue}
{uljlxe{l 2,4} je{l 3}} U2 ={uij|i6{3,6},j=1}

Us = {u;i=5,je{1.4}} '
For the problem variables x1,x7,x4,x5 whose ranges are non-binary, the unit ujj takes
its state 1 when variable x; takes the j-th value of its range. For the binary variables
x3 and X¢ a single unit is used. Unit ug gives the classification output. The "a priori”
topologies, deduced from the logical interpretation of connections as AND clauses,
are as follows. For the M problem:

_ra i
Ly = LMI V) LMI

= {foh-t o] tha{u}

We can "a priori" distinguish LaMl (the set of excitatory connections) from LlMl
(the set of inhibitory connections). A complete "a priori" HOBM for the M1 problem
would be specified by: (U16,Lyg1, W), where

4.0 reliy
WMI(X) -1.0 leL

Similar "a priori" topologles and weights can be deduced for the My and M3
problems. Lack of space prevents their specification here. In the experiments that
follow, we call densely connected HOBM of order r the ones with connections up to
order 7 from the input units to the output unit. Formally:

={;‘CU| (M <r)a(uo el)/\(uijel:uik el)}

(pr-P2)>0
(Pr-pr)<0
the activation probability of the connection A in the clamped phase and p), in the free

1
The weight adaptation algorithm used is: Awj ={ I Where p') is

phase. Inital weights are zero in all cases. We have considered that the input units are
clamped in the free phase this provides a better convergence of the learning

algorithm, and a monotone decrease of the quadratic error g2 = 2 (p A px) .

We have tested two topological design schemes: pruning and welght decay. Pruning
consists in the elimination of those connections for which the estimated standard
deviation of the weight is bigger that its estimated mean. These estimations are
computed as the weight adaptation proceeds, and the pruning is activated when the
quadratic error goes below an spec1ﬁed threshold. Weight decay is performed as

usual [5]: A(z);L = Aco;‘ Owj with a pruning at the end of the learning algorithm of
connections whose weight absolute magnitude is less than 1.

Finally, for the sake of completeness we have performed experiments with
conventional BM with 3,2 and 4 hidden units for the M{, M; and M3 problems
respectively. Table 1 shows the results of our experiments.

.
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R0§vs of table 1 show (from top to bottom) the best result reported in [1] (when #con
is specified the winner was backpropagation), the application of the a priori HOBM
with the weights specified above, the results of the weight adaptation upon the a

priori topology, and the results of application to densely connected topologies L,
increasing the order, of the raw weight adaptation algorithm, the pruning algorithm
activated at different thresholds and weight decay. The. experiments have proceed
increasing the order of the densely connected topology, searching for better results.
In the case of M only order 3 was needed, in the case of My bad results were
obtained regardless of the order, and for M3 the increased order improves the
learning ability of the machine. In general it can be observed that the lower the
activation threshold the better results of the pruning algorithm, sometimes improving
over the unpruned topology. Weight decay performs similar to the proposed pruning.

M1 M2~ M3
Phits #con Phits #con Pohit #con
Bestresultin [1] | 100 58 | 100 41 | 100 -

A priori HOBM 100 5 1998 36 | 100 4

A priori topology | 100 5 196,75 36 | 97,22 4
L3 100 106 |60 106 | 92.43 106
pruning £2<0.1 | 100 17 }51,8 0 |5277 . 1
001 | 100 22 - 96.99 33

weight decay8=0.1 - 95,37 29
L4 - 1 72.68 380 | 93,75 380
pruning £2 < 0.1 - 67.12 76 | 51,8 1
0.01 - 72.45 145 | 949 128
weight decay0=0.1 ) 58,56 380 | 93,98 - 130

L - 71.99 821 |93.25 821

pruning €2 < 0.1 - 64.81 255 |47.22 1
001 " - 68.05 313. | 86.80 89

weight decay 6=0.1 68,98 326 | 94,67 93
L6 < - 70,86 1172 196,75 1172
| pruning €2 < 0.1 - 65,7 264 1912 58
weight decay 6=0.1 - 70,3 804 93,28 774
L’ ' - 71,9 1280 | 96,29 1280
Hidden units 91,3 55 | 67,12 36 | 96,75 75

+  Table 1. Results with binary HOBM
3 Non binary HOBM

Our notation for the discrete HOBM is an straightforward extension of the binary
case. A HOBM with discrete state units is described by the cuadrupla (U,R,L,W)

where U, L, W preserve their meaning and R = {R; <2} where R; is the range of
values of the state of unit uj. The multiplicative interpretation of the connections is

120



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 117-122

preserved, so the consensus function preserves its general form:

C(k)=Y @) J]k(u) where k(uj)eR;.. It can be show that for an observable
A uei

probability distribution q’ to be feasible by a discrete state HOBM, a necessary

condition is that O belongs to the state range of all units, formally: VR; e R,0 €R;.

- The weight adaptation rule can be deduced as a gradient descent of the information
divergence measure, the so-called Kullback distance, D(q'/q) between the desired
distribution q' the one modelled by the HOBM q. This gradient is of the form:

D(q' 1 . .
9D'lq) = - —(a'x —al) whereay = Y qi J] k(u) is the mean activation level
doy, ¢, "k uer ,
of connection A under a distribution {qi} of the global configurations. Convergence
conditions similar to the ones deduced in [2] for the binary HOBM can also be
obtained in this case, taking into account the second derivatives of D relative to the
weights.

4 Results of the discrete state HOBM

The set of units considered for the Monk’s problems is U={u; i=1..6, ug}, the state
ranges of the units are: R1=Rp=R4={0..2}, R3=Rg=Ry={0..1} and R5={0..3}. A
priori topologies can be deduced taking into consideration the possible weight
relations that could give the consensus function maxima for the selected global
configurations. This task seems impossible for M; y M3, however, it is possible for
Mj. Lack of space prevents the explicit formulation of the "a priori" topology and
 weights. Densely connected HOBM of order r have topologies

L ={rcUf(M < 1) A (uo M)}

Table 2 shows the results of the application of discrete state HOBM to the Monk”s
problems, the interpretation of the rows is the same as in table 1. .

M1 M2 M3
Phits #con Pohits #con ohit #con

Best result in {1] 100 58 | 100 41 | 100 -
A priori HOBM. | - 100 2 |-

A priori topology | - 95 22 | -

L3 77 22 |64 22 |88 22
L4 80 42 175 42 |89 42
LS 81 57 |84 57 |85 57
Lo 81 63 1919 63 91,8 63

+  Table 2. Results with non-binary HOBM
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5 Conclusions and further work

In relation with the binary HOBM: The AND interpretation of the connections allows
concise topological formulation well fitted to the problem. When an "a priori"
topology can defined the convergence to the desired probability distribution is
guaranteed. This means that good intuitions of the topology could give very good
results, and it seems easier to have these good intuitions reasoning in terms of high
order connections. However, in the very common case when no good hints of the
logical structure of the problem can be obtained, still there are no good schemes to
uncover this structure, that is, we have no efficient pruning algorithms.
The discrete state HOBM provide, when applicable, provide extremely compact
formulations. The class of distributions that can be modelled seems to be more
restricted than in the binary case, because of the collapse of many states that become
indistinguishable. However, the learning algorithm seems to be able to obtain good
approximations to the desired distributions. Also in this case the tested pruning
algorithms seem of little use.
We are driving our efforts to continue the application of HOBM to other learning
- problems for which public databases are available. Also we continue to search for
pruning schemes able to discover the appropriate topologies. Finally we are
interested in finding a characterisation of the distributions that the HOBM with
discrete states is able to fit, in order to determine its applicability to other problems,
such as sound and image compression.

References

[1] Thrun S.B. et alters "The MONK “s problems: A performance comparison of
different learning algorithms" Report CMU-CS-91-197 Camegie Melon Univ.
[2]1 FX. Albizuri, A. D’Anjou, M. Graiia, F.J. Torrealdea, M.C. Hernandez "The
High Order Boltzmann Machine: learned distribution and topology" IEEE Trans.
Neural Networks in press

{31 A. D’Anjou, M. Graifia, F.J. Torrealdea, M.C. Hernandez "Ma4quinas de
Boltzmann para la resolucién del problema de la satisfiabilidad en el célculo
proposicional” Revista Espafiola de Inform4tica y Automética 24 (1992) pp.40-49
[4] A. D’Anjou, M. Graifia, F.J. Torrealdea, M.C. Hernandez "Solving
satisfiability via Boltzmann Machines" IEEE Trans. on Patt. An. and Mach. Int.
Mayo 93

[5] G.E. Hinton, Lectures at the Neural Network Summer School Wolfson
College, Cambridge, Sept. 1993

[6] D.H. Ackley, G.E. Hinton, T.J. Sejnowski "A learning algorithm for
Boltzmann Machines" Cogn. Sci. 9 (1985) pp.147-169

[71EH.L. Aarts, 1. HM. Korst "Simulated Annealing and Boltzmann Machines: a
stochastic approach to combinstorial optimization and neural computing” John
Wiley & Sons (1989) .
[8] TJ. Sejnowski "Higher order Boltzmann Machines” in Denker (ed) Neural
Networks for computing AIP conf. Proc. 151, Snowbird UT (1986) pp.398-403
[9] S.J. Perantonis, P.J.G. Lisboa "Translation, rotation and scale invariant pattern
recognition by high-order neural networks and moment classifiers" IEEE Trans
Neural Net 3(2) pp.241-251

122





