ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 113-128

A Constructive Training Algorithm for
Feedforward Neural Networks with
Ternary Weights

Frédéric Aviolat and Eddy Mayoraz
Department of Mathematics

Swiss Federal Institute of Technology, Lausanne

Abstract: We address the problem of training a special kind of Boolean
feedforward neural networks, namely networks built from linear binary
threshold units with ternary weights called majority units. We propose an
original constructive training algorithm, inspired from both the approaches
of the Tiling and the Upstart algorithms, and we give a simple proof of its
convergence. Numerical experiments were carried out to test the size of the
constructed networks as well as their generalization ability. Comparisons
are made with classical threshold unit networks.

1 Introduction

The model we consider is a multilayer feedforward neural network with binary
activations, represented as the set B = {—1,+1}. Each neuron is a perceptron
whose weights values are restricted to the set {—1,0,41}. The motivation of
studying this model is the quantization of weights, which appears to be crucial
when the network must be realized in hardware. Formally, each neuron computes
a majority function f : B™ — B of the form f(x) = sgn(w™x + wg), where
w € {~1,0,+1}", wo € {£1} and sgn is the sign function which returns +1 iff its
argument is positive. The only use of the threshold wy is to determine the output
when the potential w Tz is zero. Feedforward Boolean neural networks composed
of majority units are referred to as democratic networks. A preliminary study
has pointed out the inferest of the simple computational model provided by the
democratic networks [5, 7]. In this paper, we will concentrate on single output
networks, that realize mappings from B” to B.

A major issue in neural networks is the training problem. Given an unknown
function f : B® — B and a task T = {(af,b* = f(a*))}i_, C B x B
supplying partial information on f, the goal of the training phase consists in
determining a network that computes an extension g of T', such that g is a good
approximation of f.

To tackle this problem, we propose a constructive algorithm. When design-
ing a neural network, a crucial question is the choice of the architecture. The
advantage of the dynamic approach is that we get rid of this problem and the

123



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 113-128

algorithm will figure out itself the best architecture suited to the given task.

2 Constructive Training Algorithm

There are basically two categories of constructive training algorithms according
to the sense of the growth of the network. The forward methods construct
the network by adding new neurons beyond the existing part of the circuit.
Conversely, the backward techniques insert the new processing units between
the input layer and the most recently built layer. The Tiling algorithm [8] is a
typical example of a forward constructive algorithm, while the construction of
the network provided by the Upstart method [3] is backward.

Like the Tiling, our algorithm constructs a feedforward network layer by
layer, by adding, after the last completed layer L, new units with their prede-
cessors in L. Let T = {(a*,b%)}{_, C B™ x B denote the global task and c*
the internal representation of the input a® on the layer L, i.e. the state vector
of the units in L when the input is a*. Many different input vectors can share
the same internal representation. The set of all the vectors a* having a given
internal representation cL* is called the class of the internal representation c*¥.
A class is faithful if all the corresponding outputs b* of any of its elements a*
are identical. An unfaithful class contains at least two elements a* and a! with
b* # b'. The faithfulness of any class corresponding to internal representations
on any layer is a necessary condition for the correct computation of the task.

The main ideas of the algorithm are as follows. During the construction of
layer L, new units will be added one at a time in L in order to increase the global
faithfulness, until the classes corresponding to ¢F* are faithful Vk. Then, a new
layer will be started, trained with the new task 7' = {(c*,5%)}22, ¢ B!! x B,
containing only one element per class. The algorithm stops when the first unit
of the new layer realizes the task with no errors.

Making the classes faithful is not the only objective we should seek. While
building a layer, we already know that we will need another layer to achieve the
task, and we would like the next task for that layer to be as easy as possible. To
handle this other objective, we can already consider the first unit uf""l of the
next layer. Thanks to ternary weights, we can assume without loss of generality
that it will be connected to all units in L with +1 weights.

The local algorithm to train a single unit uf in layer L will then work as
follows. For each example of the task, the output of unit uf‘“ is evaluated,
receiving its input from all the units of layer L, including the currently trained
unit. The weights of the trained unit are adapted in order to minimize the
number of mistakes made by u{""l. To ensure that the construction of a layer
will end, we have to demand also that at least one unfaithful class is divided
by the introduction of the new unit. Note that training is performed locally, on
a single unit and that when it is done, the weights of that unit cannot further
change. Unlike the Tiling, this approach always considers the full task, thus
taking into account all the classes simultaneously. Training of the first unit of a
layer can be performed the same way, because its output is the same as the first

124



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 113-128

unit of the eventual next layer.

Several improvements of the local objective function to train a new inserted
unit were considered, as this appears to be the crucial point. Let v¥ denote the
current potential at unit uf“ for input a*, including the contribution of the
new unit uf under training. The weights of this new unit are adapted in order
to minimize a function of those potentials. The most interesting objective was to
minimize 3, . v (v¥)? where N is the set of misclassified examples. This variant
will be referred to as “enhanced version” in the following.

The local learning problem for unit uf is a discrete optimization problem.
We have to find a weight vector w with components in the set {—1,0,+1}
and a threshold wy € {:t%}, optimizing the above defined criteria. The algo-
rithm we use is a classical tabu search technique; a detailed description of this
method can be found in [4]. In our problem, the set of feasible solutions S is
{-1,0, 41}« {£31}. The initial solution is w = 0 (except for u¥, for which
we take the all +1 vector). A move will consist either in a small modification
of one weight w; «— w; + 1 assuming that w; remains in the range {~1,0,+1},
or in the inversion of the threshold wg « —wy. The algorithm works iteratively,
exploring the set of feasible solutions S. To prevent cyling, a tabu list is used,
remembering the last moves and forbidding their opposites.

Finiteness of the construction of a layer is ensured by the fact that at least
one unfaithful class is divided by the insertion of a new unit. This implies that
when adding a unit, we increase the number of classes; thus, after at most pg
insertions, all classes are faithful and the layer is completed. Global convergence
of the algorithm is guarranteed if there is at least one (faithful) class containing
two or more points, when a layer is completed. Indeed, this implies that the
task for the next layer will have at most one association less than the previous
task. The great advantage of tabu search is that it allows almost any objective
function. It is thus easy to take into account the various objectives discussed
above.

3 Numerical Experiments

In this section, we will present some of the results obtained with the simple
version and with the more enhanced version of our algorithm. We will compare
our results to those obtained with real weighted networks by the Tiling algorithm
and by the Shift algorithm, which is a variant of the Upstart algorithm proposed
by E. Amaldi and B. Guenin [1].

3.1 Tests of complete tasks

Let f be a Boolean function B — IB. We consider tasks of the form T =
{(a*, f(a*)) | a* € B"}, containing all the examples of the known function f.
The purpose of this first series of tests on complete tasks is to evaluate the size
of constructed networks capable of implementing exactly the given function f.
Experiments were made on the PARITY function, defined as f(x) = IL;z;
and on a RANDOM function, defined as f(x) = +1 or — 1 with the same prob-

125



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 113-128

ablity. Figures 1 and 2 show the average size of the networks (number of units)
produced by 10 runs versus the input size n for complete tasks. .Performances
of the simple and enhanced versions of our algorithm for democratic networks
are compared with those of the Tiling and the Shift for classical networks.

nb units
17.5% |
- Simple i
15} 1
—_— Enhanced g
125 . Tiling

10f - Shift

75F

-
-

Fig. 1: Construction of PARITY functions. Average number of units of the networks
built on complete tasks versus the input size n.

The results obtained with the refined version are comparable to those ob-
tained with the Tiling, even though our model is much more constrained. For
small input sizes, the enhanced algorithm constructed the smallest known demo-
cratic networks able to compute the PARITY function exactly [5].

3.2 Generalization tests

We present now numerical experiments done to test the generalization ability of
the constructed networks. Consider the 2-CL UMPS function defined as f(z) =
+1if and only if Card{i | #;i = +1 = —2(i mod n)+1} > 2.

Networks were built for an input size n = 25 and trained on sets of p ran-
dom points, with p ranging from 100 to 800. Their performances were evaluated
over test sets of the same size. Figure 3 shows the average percentage of incor-
rect classifications, over 25 trainings, obtained with an improved version of our
algorithm. Performances of the Tiling and the Shift algorithms are also plotted.

We observe that the generalization ability of the networks obtained with our
algorithm are very similar to the results obtained with general linear threshold
units. It is very encouraging to see that the performances are better than those
of the Tiling.

126



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 113-128

nb units

|
50t - == Simple J
—_— Enhanced /1
40} /

--------- Tiling )/
/ .
S Shift e

Fig. 2: Construction of RANDOM functions. Average number of units of the
networks built on complete tasks versus the input size n.

% error

45¢
— Enhanced
4o}
35¢

30t

25¢

100 200 300 400 500 600 700 800
Fig. 3: Generalization of 2-CLUMPS. Average percentage of errors made by
networks trained on p randomly chosen examples in IB25.
4 Conclusion
Training feedforward neural networks is a difficult problem and it becomes even
harder when the weights are limited to discrete values. We proposed a construc-

tive training method for feedforward Boolean networks with ternary weights in
{—1,0,+1}. Constructive techniques avoid the problem of dimensioning the

127



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 113-128

network. The described method takes the advantages of forward and backward
approaches and has simple convergence guarrantees. However, it is essential to
generate networks of small size, since the generalization ability collapses when a
too large network is built.

A variant that could be adopted is a method where the local learning strat-
egy operates on more than a single unit at the same time. The number of units
introduced simultaneously should not be too high since their update would be-
come too complex, but it would be easy to train two new units concurrently.
This extension has been considered and seems promising.

The reasonably small networks obtained on the complete tasks and the fair
generalization performances reached for the 2-CL UMPS function show that the
discrete weights model can be a useful tool to realize Boolean functions, espe-
cially if it has to be done on chip.

References

' [1] E. AMALDI AND B. GUENIN, Constructive methods for designing compact
feedforward networks of threshold units, tech. rep., Swiss Federal Institute of
Technology, Department of Mathematics, 1993.

[2] F. AvIOLAT, Les réseauz de neurones artificiels multicouches & poids bi-
naires: etude de complezité et algorithmes constructifs, Master’s thesis,
Ecole Polytechnique Fédérale de Lausanne, Département de Mathématiques,
March 1993.

[3] M. FREAN, The upstart algorithm: A method for constructing and training
feedforward neural networks, Neural Computation, 2 (1990), pp. 198-209.

[4] F. GLOVER, “labu search” part I, ORSA J. Computing, 1 (1989) pp- 190-
206.

[5] E. MAYORAZ, On the power of networks of majority functions, in Lecture
Notes in Computer Science 540, A. Prieto, ed., INANN’91, Springer-Verlag,
1991, pp. 78-85. -

, Feedforward Boolean Networks with Discrete Weights: Computational
Power and Training, PhD thesis, Swiss Federal Institute of Technology, De-
partment of Mathematics, 1993.

[7]

; On the power of democratic networks, Tech. Rep. ORWP 93/2, Swiss
Federal Institute of Technology, Department of Mathematics, 1993. submit-
ted for publication.

[8] M. MEZARD AND J.-P. NADAL, Learning in feedforward layered networks:
the tiling algorithm, J. Phys. A: Math. Gen., 22 (1989), pp. 2191-2203.

128





