ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 135-140

Reinforcement Learning and
Neural Reinforcement Learning
Samira Sehad and Claude Touzet

LERI - EERIE, Parc Scientifique Georges Besse, 30 000 Nimes, France.
Tel: +33 66 38 7025 Fax: +33 66 84 05 06
Email: samira@eerie.eerie.fr touzet@eerie.eerie.fr

Abstract. In this paper, we address an under-represented class of
learning algorithms in the study of connectionism: reinforcement learning.
We first introduce these classic methods in a new formalism which
highlights the particularities of implementations such as Q-Learning, Q-
Learning with Hamming distance, Q-Learning with statistical clustering and
Dyna-Q. We then present in this formalism a neural implementation of
reinforcement which clearly points out the advantages and the
disadvantages of each approach.

1. Introduction

Reinforcement learning (RL) was initially designed by the psychologists and has been
studied for almost a century {8]. It was then reused by the Machine Learning
community [2, 8, 11]. Up until today, a clear synthetic view of the approach
allowing each variation of the implementation to be positioned has not been
available. By decomposing existing RI. methods into functions and elements, we are
able to propose a general model of the reinforcement approach. Instantiations of this
general model on the widely used Q-Learning [11, 5] and its refinements [6, 8] allow
us to easily understand a neural implementation of reinforcement and to point out the
advantages and disadvantages of this approach. Furthermore, we can determine where
our efforts should be made so as to improve the performance of a neural
implementation of reinforcement.

2. Reinforcement Learning

RL is the leaming of a mapping from situations to actions so as to maximize a scalar
reward or reinforcement signal [8]. An agent learns a given behavior by being told
how well or how badly it is performing an action which starts from a situation. It
then receives a returned feedback as a single information item from the world. By
successive trials and/or errors, the system determines a function G which is adapted
through learning. For this purpose, numerous RL algorithms are available [8, 11].

3. Methods of Reinforcement Learning

‘We propose to view RL as a composition of (Fig. 1.):

- an internal state S,

- an evaluation function V,
- an update function U,

- a heuristic function H.

135

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 135-140

The following elements propagate information among functions:
-aset] = {i],...,in} of world situations. By definition, I is so large
that it cannot be exhaustively explored during learning.
-aset A = {ajy,...,am} of actions,

- a reinforcement signal labelled r.
—
Evaluation function V Update function U (€&
X Reinforcement r
Action a * Situation i f '
l Heuristic function H
Wodd I

Fig. 1. General decomposition of reinforcement methods

A general algorithm for reinforcement methods is then [6):

1. Initialization of the internal state S to Sinitial.
2. Repeat :
1 - Let i be a world situation.
2 - Select the action a to be performed, by the evaluation function V:
a=V(,S).
3 - Execute the action a in the world. Let r be the immediate reward (if it is
available) associated with the execution of the action a in the world.

4 - Update the internal state S by the update function U :
Snew =U (S()ld, i, ar).
Knowledge about returned rewards is stored in S.

The heuristic H is a function given by a human expert. It is a formula which leads the
agent to adopt the behavior G. It is the only function dependent of the application.
The reinforcement 1 is a qualitative signal (i.e., 1: good; -1: bad; 0: unknow) returned
by the heuristic function H.

We propose a description in the formalism given above for each of the following
reinforcement algorithms: Q-Learning and its refinements (Q-Learning with Hamming
distance, Q-Learning with statistical clustering and Dyna-Q).

3.1 Q-Learning Algorithm

The Q-Learning algorithm builds a Q function that maps situation-action pairs (i, a)
into expected returns r. Q(i, a) is the system’s estimate of the return it expects to
receive given the fact that it executes action a in situation i.

a/ The internal state S:
The algorithm uses a lookup table to store the estimated cumulative evaluation Q.
All these values represent the internal state S.

S={Q@Ga),iel,aeA)}
Row indices in the lookup table represent situations, column indices represent
actions. The representation of the internal state does not need to be only in the form
of tables, but can also be more compact representations like neural networks, decision
trees or symbolic rules[8].

136

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 135-140

b/ Evaluation function V:
Using the Q values, the behavior of the system, G, is determined by the rule:

G(i)=a suchthat Q(,a)=Max{Q(,b),be A}
In a definite number of cases, the choice of an action with the evaluation function V
is given by: a = V(i, Q) such that V is the maximum function.
For the other cases (typically 20%):

a = Random(A) such that V is a random function (for example, a
Boltzman distribution [11]).
¢/ Update function U:
The internal state Q is updated by the following function :

U: Qnew = U(Qold, i, 3, i’, r) where i’ is the situation after executing a in i.
QG, a)new = QG, a)old + B(r+ g.MaxQ(i’, a) - Q(i, a)old)-

where B and g are constant coefficients, between 0<B8,g < 1.
The reinforcement at the present time

should be equal to the expected Qit.ap Qi2a2)

returned rewards. The error between =0 I =0 |

the expected value r+ g.MaxQ(i’, a) - L.

and the current value Q(i,a) must then 2 P

be minimized.

This updating rule has the effect of QL. al

propagating a reward associated with a =0

given situation-action to previous : =

pairs of situation-action. It is, in fact, Fig. 2. Example of backward
a way to backpropagate delayed propagation of a delayed reinforcement
rewards (Fig. 2). on 3 runs of the same sequence of

situation-action.
3.2 Q-Learning with Weighted Hamming Distance

The main idea of this refinement is to learn faster. With this end in mind, Mahadevan
[6] proposes computing a Hamming distance between the real situation i and its
similar situations in order to apply the update function on all of them and this for the
same reward.

a/Update function U : N al @2 a3 a4 a5 a6
The update function U is the same as the !'1]
one used in the Q-Leaming. However, all 0000 *

similar situations are updated at the same 0001 i2

time using the same reward. The 3

Hamming distance between any two oott

situations is simply the number of bits ol #

that are different between them. Bits can

be of different weights. Two situations 1 is

are distinct if the Hamming distance 1110 i6

between them is greater than a fixed g 3 yoficd Q values for similar

threshold (I’) (Fig. 3'): situations (in the sense of Hamming

Example: ip=(0001), i3=(0011), r =2. distance) after executing a in i3.

Hamming distance(ip, i3) = 1< 2. B All the Q values are updated
using the same reward.

137

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 135-140

3.3 Q-Learning with Statistical Clustering

The goal here is the same as in the previous approach, Mahadevan [6] uses statistical
clustering to propagate retumed rewards across situations.

a/ Update function U N2 w5
In order to propagate a returned reward i
for a situation i, the same function U 0
that was used in Q-Learning is used

here. i

Cluster c2
associated to a2

Each action is associated with a set of 3 i
clusters giving information 2 "
concerning the usefulness of g
performing the action in a particular g i5
class of situations. Clusters are a set o4 ,
[P 3 9y 2 . . - 16
of “similar” situation instances which

use a given similarity metric. Each)
situation i’ is updated, if it belongs Fig. 4. Updating of the Q values

to a cluster in which i appears (Fig. associated with 2 clusters.
4). B After executing a2 in i3.
' After executing a4 in i3.

3.4 Dyna-Q

It may be difficult to rerun the same sequence of situations-actions so as to
backpropagate delayed rewards. As a result, Sutton [8] imagined adding a model of the
world in which pairs of situation-action are randomly carried out again (Fig. 2.).

a/ Heuristic function H:

The H function is modified in order to deal with the modelled world. In this case, only
previously seen pairs of situation-action (in the real world) will lead to a non-zero
reinforcement reward. The returned reward 1’ is the same as in the real world.

b/ Evaluation function V:

When the experience is performed in the real world, V is the maximum function.
Otherwise (i. e., for an experience in the modelled world) V is a random function.

¢/ Update function U:

The updating rule uses rewards r or r’ indifferently.

As we have seen, RL methods are faced with two important problems. Generalization
is limited to syntactic criteria. Methods like those proposed by Mahadevan and
Connell [6] and Sutton [8], can speed up learning but they are nevertheless subject to
a memory requirement for storing all possible situation-action utility values. Neural
networks are another kind of approach for RL methods.

4. Neural reinforcement learning
Numerous authors ([2, 4, 7,1], among others) propose a neural implementation of

reinforcement learning, but it is not clear what the differences are nor where lie
compared with a classic implementation. In our formalism, a neural network

138

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 135-140

implementation implicates the following modifications:

a/ The internal state S:

The internal state is constituted by the weight set of the network (W). The memory
size required by the system to store the knowledge is then defined, a priori, by the
number of connections in the network. It is independent of the number of explored
situation-action,

b/ Evaluation function V:

The evaluation is the result of the processing by the network of the input situation i
plus a random component b. This component decreases during the learning process.
At the same time, the network generalization becomes better : the system leams. The
selection of an action is not based on deterministic quantities, like Q values. The
neural network proposes the "best” action to perform in the given situation, but it
gives no information about the expected reinforcement or other actions having the
same usefulness. It should be remembered that in classic RL methods, each utility
value associated with a situation-action pair is stored and remains available for
computation. The architecture of the neural network can be multilayer if mapping
from situations to actions is believed complex.

¢/ Update function U:

The update function U works on the internal state. When applied to a neural network,
it is a weight modification algorithm. Qualitative reinforcement gives information
about how well the system behaves. In the case of a positive reinforcement signal, it
is particularly easy to determine the output error. This error is equal to the added
random value. Therefore, a gradient error descent algorithms are good choices for
updating functions. As regards a negative reinforcement signal, an easy definition of
the output error is restricted to simple cases where only two actions are possible. In
this case, the desired output is the other action. If actions are binary coded, the desired
output is then the inverse of the network proposal. As we can see, the definition of
an error in the case of negative reinforcement is difficult. It is important to note that
this update rule is not the same as for Q-Learning.

Among the advantages of neural reinforcement learning are a limitation in the memory
requirement and more intelligent exploration of the situation-action space. The
generalization achieved by the neural network cannot be characterized as easily as for
the Hamming distance or clustering techniques. Nevertheless, all connectionist
applications used in industry serve to highlight all the more the interest one can find
in using artificial neural networks. The main limitation which arises when using
neural reinforcement learning is that the reward value associated with a situation-action
is not available, however, this is the price to be paid if one wants to obtain
compactness and generalisation. It should be noted that coding on the output layer of
the actions is of great importance and that proposals have been made to extend neural
reinforcement to multiple possible actions [10].

5. Conclusion
Following the description of a formal model and a general algorithm for RL, we have

decomposed Q-Leaming, Q-Learning with Hamming distance, Q-Leaming with
statistical clustering and Dyna-Q, into functions and elements. This decomposition

139

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 135-140

allows us to highlight the evaluation, update and heuristic functions of each method
and then to point out the different particularities of each function. We have used this
model for the analysis of a neural implementation of reinforcement. In a case such as
this, the memory requirement is limited by the number of connections and
generalization by neural networks is, a priori, more interesting. Experiments
undertaken with a real robot underline the interest generated by a neural network
implementation of RL [10].

It will be particularly interesting to develop different evaluation functions not only
using maximum or random functions [9] or neural networks, but also an evaluation
function that proposes several actions to be performed. It will also be worthwhile to
develop different update functions which will allow several utility values to be
updated at the same time. This will lead to faster learning. The internal state
represented as a lookup table can be characterized by its easy implementation and use.
However, as we have seen, the implementation of neural networks is interesting in
term of generalization. Classifier systems which use genetic algorithms [3] have a
similar objective but demand further study within the framework of this fomalization.

References

1. D. Ackley, M. Litman: Interactions Between Learning and Evolution. Artificiel
Life II, SFI Studies in the Sciences of Complexity, vol. X, C. G. Langton & Co.
Eds, Addison-Wesley, 487-509 (1991).

2. A. G. Barto, P. Anandan: Pattern Recognizing Stochastic Learning Automata.
IEEE Transactions on Systems, SMC-15, 360-375 (1985).

3.J. Biondi, P. Collard: Cooperation Between Reactive Agents Reinforcement And
Hybridization. Second Congress of System Science, AFCET, Prague, October,
Vol. 11, 599-608 (1993).

4. J. Hertz, A. Krogh, R.G. Palmer: Introduction to the Theory of Neural
Computation. SFI Studies in the Sciences of Complexity, Addison-Wesley,
Redwood City (1991).

5. L-J. Lin: Self-Improving Reactive Agents Based on Reinforcement Learning,
Planning and Teaching. Machine Learning, 8, 293-321 (1992).

6. S. Mahadevan, J. Connell: Automatic Programming of Behaviour-based Robots
using Reinforcement Learning. Al journal, July 25 (1991).

7. J. Millan, C. Torras: A Reinforcement Connectionist Approach to Robot Path
Finding in Non-Maze-Like Environments, Machine Learning 8, 363-395 (1992).

8. R.S. Sutton: Reinforcement Learning Architectures for Animats. Proceedings of
the First International Conference on Simulation of Adaptive Behaviour. From
Animals to Animats. Edited by J-A Meyer and S.W. Wilson, 288-296 (1991).

9. S.B. Thrun: Efficient Exploration In Reinforcement Learning. Technical report
CMU-CS-92-102, School of Computer Science, Carnegie-Mellon University,
Pittsburg, Pennsylvania 15213-3890, January (1992).

10. C. Touzet: Extending Immediate Neural Reinforcement Learning to Multiple
Actions. ESANN (1994).

11. C.J.C.H. Watkins, P.Dayan: Technical note: Q-Learning. Machine Learning 8,
279-292 (1992).

12, S.D. Whitehead: a Complexity Analysis of Cooperative Mechanisms in

Reinforcement Learning. In Proceedings of AAAI-91: 607-613 (1991).

140

