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Abstract. We study approximation of continuous functions by networks
with kernel basis function (KBF) units based on classical convolution
kernels, We derive estimates of the error of approximation as a function
of the number of hidden units.

1 Introduction

Radial basis function (RBF) networks arouse as an alternative architecture to
hierarchies of perceptrons (Broomhead and Lowe [1]). They have been success-
fully applied to problems such as e.g. timeseries prediction (Moody and Darken
[8]. Theoretically approximation properties of RBF networks with Gaussian ra-
dial function were studied by Girosi and Poggio [3] and by Hartman et al. [4]
and for more general radial functions by Park and Sandberg [9, 10].

In contrast to the perceptron-type networks where most proofs of the univer-
sal approximation property are based on Stone-Weierstrass’ theorem, in the case
of RBF networks, we prove the universal approximation property using lemmas
related to the properties of convolution. In [6], we showed how approximation
of functions by convolutions with kernel functions imply universal approxima-
tion properties of RBF networks with non-zero integrable radial functions and
introduced kernel basis function (KBF) units. We showed that these networks
have the universal approximation property and extended learning algorithms to
KBF networks.

In this paper, we build on these results to derive estimates of rates of ap-
proximation. We show that for any of a number of classical kernel functions rate
of approximation is bounded above by terms depending on moduli of continuity
and convolution approximation error. Using Jackson’s estimate, we give an up-
per bound on approximation error for KBF networks with Jackson convolution
kernel.

Section 2 contains preliminaries concerning RBF networks and approxima-
tion of functions. In Section 3, we review use of convolutions as a tool for study
of approximation capabilities of RBF networks. Section 4 introduces a more
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general concept of KBF networks and gives examples of KBF networks based
on kernel functions arising in classical analysis. In section 5, we derive esti-
mates of rates of approximation by KBF networks based on approximation by
convolutions.

2 RBF networks

By R and N we denote the set of real numbers and positive integers, respec-
tively; also, I = [0,1] and R4 = [0,00). For a bounded function f : R — R
the uniform norm is defined by

I fllo = sup |f(z)].
zERY

As usual, for a compact subset A of R?, C(A) denotes the set of all real-valued
continuous functions on A with the uniform norm and corresponding topology.

A radial basis function (RBF) unit with d inputs is a computational
unit that computes a function from R? to R of the form ¢(|| z — ¢ || /b), where
¢ : R — R is an even (radial) function, || . || is a norm on R¢, and ¢ € RY,
b€ R, b >0 are parameters called center and width, resp.

A radial basis function (RBF') network is a neural network with a single
linear output unit, one hidden layer with RBF units that have the same radial

function ¢ and the same norm || . || on R¢, and d inputs.
By F(#,]| . ||) we denote the set of real-valued functions on I¢ computable
by RBF networks with the radial function ¢ and the norm || . || with any number

of hidden units:;

Fell-) = {f:IP=R:flm)=) wid(llz—cill /b):
i=1

nGN, C,'ERd, b, w; € R, b,'>0}.

The most popular radial function currently used in applications is the Gaussian

v(t) = exp(—t?) (see [4], [8]).
By Fu(¢, ] - ||) we denote the set of functions computable by RBF networks
with a uniform width, i.e.

Fu(@: 11D

{f:IdaR:f(x):Zw,-qb(ﬂ:c—c,- Il /) :

=1

meN, C.'E'Rd, b, w; €R, b>0}.
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The property of a class of feedforward networks to approximate general func-
tions arbitrarily well can be described succintly using topology. Let U be a class
of functions, T its subset, and p a metrics on U. The class T is said to have the
universal approximation property with respect to (U, p) if it is dense in U
with respect to the topology induced by p.

3 Approximation by Convolutions

A convolution of two functions f,g : R =R is fxg= [ f(z)g9(x — y)dy.
d

R

The approximation of functions by convolutions with various kernel functions
with a “peak” is a classical method. Weierstrass in 1885 used convolutions with
Gaussians v;(z) = exp(—z2/6)/6 for the proof of his famous theorem on uni-
form approximation by polynomials. He approximated an arbitrary continuous
function f uniformly on compact subsets of R by

£(2) = lim £+ /v M

To generalize this approach, we need the following lemma which is a straight-
forward modification of the classical theorem on approximation by convolutions

(see, e.g. [11]).
Lemma 3.1 Let d be a positive integer, || .|| a norm inR? and {K, : R* — R,
n € N'} be a sequence of functions such that
(i) for every n € N and every z,y € R? K,(z,y) > 0;
(ii) for every n € N and everyz € R? [ Kn(z,y)dy = 1;
Re
(iii) for every 6 > 0 and every z € R¢ limp—~oo [ Ka(z,y)dy =0,

Js(x)
where Js(z) ={y| ye R4, |z -y || > 6},

Then for every bounded continuous function f : R4 — R and for every z € R4
Jim [ £)Ka(a,0)du = 1(0).
R

If all K, are continuous then the convergence is uniform on compacta.

A special case when K,(z,y) = kn(z — y) applies to the approximation
by convolutions. By the standard technique generalizing Weierstrass’ formula
(1), one can approximate continuous functions by sequences of convolutions
f * ¢, where functions {¢,, n € N} are constructed from a non-zero integrable
function ¢ by normalizing and “sharpening”, i.e. putting ¢n(t) = né¢(nt). Ap-
proximating such convolution by an appropriate Riemann sum, we obtained in
[6] the following.
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Theorem 3.2 For every positive integer d and for every continuous function
¢ : R — Ry with finite non-zero integral and for every norm || . || on RY,
Fu(d, ] . 1) is dense in C(I9).

Thus the class of single hidden layer RBF networks with uniform width has
the universal approximation property.

4 KBF networks

To take advantage of Lemma 3.1 for deriving the universal approximation
property for classes of feedforward networks, we do not need to restrict our at-
tention to RBF networks only. There are many classical sequences of kernel
functions (like Dirichlet’s kernel, see below) that are not derived from one func-
tion by dilation (multiplying the argument by n). To introduce general kernel
functions into neural networks, in [6], we defined kernel basis function (KBF)
units.

A KBF unit with d inputs computes a function R¢ — R of the form k, (|| z—¢c||),
where {k; : R — R} is a sequence of functions}, || . || is a norm on R¢, and
c € R4, n € N are parameters. We call n sharpness.

A kernel basis function (KBF) network is a neural network with a single
linear output unit, one hidden layer with KBF units with the same sequence of
functions {¢5, n € N'} and the same norm || . || on R, and d inputs.

By K({¢n, n € N}, || . ||) we denote the set of functions computable by KBF
networks with {¢,, n € N'} and || . || with any number of hidden units. So

K{#nn € NLI-I) = {F:F>R:f@) =) wida,(l z~cil]),

i=1

m, niGNs ciERd; wiER}'

By Ku({kn, n € N}, || . ||) we denote the set of functions computable by KBF
networks with the same ¢,, for all units in the hidden layer, i.e.

Ku({ab A1) = {F:I%>R:f(2) =Y widn(llz—cil]):

t=1

m, nEN; ciERd) WiER}-

As in Theorem 3.2, we obtained in [6] universal approximation property for
quite general KBF networks.
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Theorem 4.1 For every positive integer d and for every sequence of conlinuous

functions {ky : R — R4, n € N'} and for every norm || . || on RY satisfying

for every n € N and every x € R? [ kn(l| = — y |[)dy = 1 and for every § > 0
Rd

and every z € RY nlirn f ka(ll = =y [dy = 0, where Js(z) = {yl y € R4,
TP Js(2)
lz=y|| > 8); the class Ku({kn, n € N}, || . |l) is dense in C(I%).

All of the following classical kernels satisfy the assumptions of Theorem 4.1
and so KBF networks with any of these kernels are powerful enough to approx-
imate continuous functions (of course, to achieve arbitrary accuracy, one must
increase the number of hidden units).

Féjer kernel kn(z) = [sinnz/(n - sinz)]?
Dirichlet kernel kn(z) = [sin(n — 1/2)z/(2nsin(z/2)]
Jackson kernel ka(z) = [sinnz/(n - sinz)]*
Abel-Poisson kernel kn(z) = 1/[1 4 (nz)¥)

Weierstrass kernel ka(z)=e™"*

Landau kernel Ea(z) =(1— 2%

5 An Estimate of the Error of Approximation

Let f:R — R be a continuous function, A C R, put ||f|la = sup,ea |f(2)l-
wa(f,h)= sup |f(z1) — f(z2)| is modulus of continuity of f on A.

&y ~z2|<h,
z1,23€A

For some of the above mentioned convolution kernels upper bounds on con-
volution approximation are known. The following theorem derives estimate of
the rate of approximation by KBF networks depending on the error of approxi-
mation E(f, k,) = |f = f * ka| and modulus of continuity of f and ky.

Theorem 5.1 Leta € R, A = [-a,d], A* = [-2a,2a], f : A = R be a
continuous function, E(f, kn) = ||f(z) — [, f(t)kn(z — t)dt||a. Then for every

m € N there exists a KBF network with m hidden units computing a function
g € Ku({ka}, ||-Il) such that for every z € A

|F(z) = 9(2)| < E(f,kn) + 2a|| flla wa-(kn, %S) + lknllas walf, .2."i:.),

Proof: By assumption, |f(z) — [, f(z)ka(z —t)dt| < E(f, kn) for every z € A.
We estimate [, f(t)kn(z — t)dt by a Riemann sum s,.
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| £z = it~ sm(@)] < 2awalha(t), 20),

where s, (z) = E he(ti) = ;}; f: F@)ka(z—1),t: = -—a+-2;:‘—‘i, i=0,1,...m
of

From the propertles of modules of continuity we have

Al Okn(e =1, 22) < fllawale =1, 2) 4 flka(e — DllawalF(), 22),
where z,1 € A.
[ 1@ =sm@] < 2Ly g0 haaate - 1,22 +

+ 2a(lkn(z - t)]la - wa(f(2), ;)-
Since wA(lc,.(.i ~1),8) < wge(kn(t),6) for every 6§ > 0 and z,t € A, we have
[ 1@ -sm@l < 2L 4 ou i, 22 4+
A
+ 2a||knlla-wa(f, ;;)-
Putting g = s, (z), we have g € Ky({kn},||.|) and on A

/() = 9@)] < B(,ka) + 20lflla (ko o) + allae wa(£,22).

We use this theorem to estimate the error of approximation for the KBF
networks based on Jackson kernel with inputs in the interval [-,7]. Consider
the following operator:

[ £ (e~ )at = [ fa+iLaa, | (2)
where L, is the Jackson kernel
sin{nt/2) [ _
Ln(t) = Az (sm(t/?)) _/TL,,(t)dt-_ 1,

where the last relation defines A,,. It is proved in [7], p. 55 that A, = n3.
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It is convenient to normalize the operator (2) in such a way as to obtain a
trigonometric polynomial of degree n. For this purpose, we put

Kn(t) = L (t), r= [g] +1

The operator J,(z) = Ju(f,2) = [ f(z +t)Kn(t)dt is called the Jackson

operator.
Theorem 5.2 (Jackson) There ezists a constant M such that, for each function
f € C(A), where A = [—m,7] and for every n € N, |f(z) — Jn(2)| < Mwa(f, 1).

The proof can be found for example in [7], p.56.

Theorem 5.3 There ezists a constant M such that for every f € C(A), A =
[~m, 7], for every n (sharpness of the Jackson kernel) and for every m € N and
a function g computable by a Jackson KBF network with m hidden units and
with sharpness n such that for everyz € A

2
£(&) = 90 < Muaf, 2)+ 2 [ flawas ey ) + [ Eellae walf, 2, 3)
where r = [5]+ 1 and A* = [~2m,27].

Proof. From Theorems 5.1 and 5.2, where E(f, k,) = Mwp(f, 3). o
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