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Abstract. RBF networks are widely used for the non-parametric esti-
mation of real-valued multi-dimentional functions through a finite set of
samples. This paper describes a method to compute the parameters of
a RBF network with Gaussian kernels, namely their locations, widths
and weights; the parameters are first estimated through uncorrelated
procedures to fit the inherent characteristics of the learning data set dis-
tribution, then are refined to minimize locally the global mean-square
error of the network. As the simulation shows, this method can give bet-
ter approximation results than conventional RBF procedures with no
feedback between the computation of the three sets of parameters.

1 Introduction

Complex data processing is a challenge encountered in various domains of the
engineering sciences. Classification, identification and approximation are closely
related fields. In each a set of data is used to build non-parametric or parametric
functions, which can then be used as a gerenalization on other data.

Radial basis functions have been widely used for such function interpolation
[1]. The principle of radial basis functions networks is to fit a weighted sum of
radial functions ¢ to the function f to approximate. Such functions ¢ depend
only on the norm of the difference between their argument and a center, called
centroid; they generally can be tuned by a width factor, or some kind of vari-
ance. After having determined the number of radial basis functions to use in a
particular problem, the purpose of a RBF algorithm is to fix the locations of the
kernels, their widths and the weighting factors.

Several algorithms and heuristics have been proposed to evaluate these pa-
rameters. In the algorithm by Moody and Darken [4], locations of centroids,
widths and weights are sequentially determined, without feedback between these
three computations. Locations of centroids are first fixed by an estimation of the
probability density of the function, then widths are computed to ensure a de-
fined “overlap” between radial basis functions centered on these centroids, and
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finally weights are computed to minimize a quadratic error function. Unfortu-
nately, once the locations of the centroids are fixed , they are not allowed to be
adjusted in order to globally minimize the quadratic error function. The same
remark applies for widths.

We propose in this paper an algorithm to compute efficiently parameters in
a RBF network similar to Moody and Darken’s one. In our algorithm, however,
width factors are determined with respect to the standard deviation inside the
“region of influence” of a centroid, rather than by fixing an a priori overlapping
factor between functions. Furthermore, values found for locations of centroids,
width factor and weights are not definitive, but are optimized by a gradient de-
scent algorithm to finally minimize the global mean-square error on the learning
data set between the desired output values and the approximated ones.

2 RBF networks

The problem of interpolation of real multivariable functions can be expressed as
follows. Let us consider a set of N data points in the input space R, together
with their associatied desired output values in R:

D= {(xu) €R xR, 1 <i < N | fxi) = i} (1)

This data set can be used to characterize a function with one-dimensional output
values; multi-dimensional interpolation can be done by generalizing the following
equations and algorithms, while considering separately each component of the
output vectors. We consider only one dimensional output in the following,.

The RBF approach to approximate function f uses P functions $j(a) =
¢;(Jle — c;)||), where ¢; are radial functions ¢; : Rt — R,1 < j < Pu e
R4, c; € R4. The c; are the locations of the centroids (the centers of the radial
basis functions), while ||-|| denotes a norm on " (usually Euclidean).

The approximation of function f may be expressed as a linear combination
of the radial basis functions

P
fu) =X (lu—cl)). 2)

~ j=1
The most common radial function in practice is a Gaussian kernel given by

- (M)
¢(la—cjly=e \ = /, : )
where o; is the width factor of kernel j.

Once the general shape of the ¢; functions is chosen, the purpose of a RBF
algorithm is to find parameters c;, o; and A; to best fit function f. Fitting
means here that the global mean-square error between the desired outputs y; for
all data point x;,1 < 7 < N and the estimated outputs f(x;) is minimized. This
error is given by

En, =

DN =

N . 2 N . 2
> (w-Fx) =520 (F) - Fx) )
izl i=1

N
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3 Training of RBF networks

As pointed out in the previous section, training a RBF networks means to find
parameters c;j, o; and A; used in equations 2 and 3 in order to get the best
approximation f of the function f. In a conventional RBF training (see [4, 2]),
these three sets of parameters are succesively and independently computed.

3.1 Locations of centroids

Locations of centroids are chosen according to the probability density of the
input set x;. The reason for this is that one tries to best estimate function f
in the regions where there are many data available, and to give less importance
to the estimate in regions where there are only a few input points. From the
point of view that the error which minimizes equation 4 is in fact a sum on all
individual errors for all points in the data set, placing centroids according to
the probability density of the input set seems reasonable. Moody and Darken
[4] proposed to use a k-means clustering algorithm to find the locations of the
centroids ¢; minimizing the vector quantization error

N P
1
Eyy(cy...cp) = 522&:‘ lix: — el ()

i=1j=1

where §;; is the cluster membership function whose value is 1 if vector x; falls
inside the region of influence of ¢;, and 0 otherwise; a region of influence is
defined as the set of points in the input space closer to one centroid than to
another.

According to [2], we suggest using a LVQ1 iterative algorithm introduced in
[3] to find the centroids ¢; minimizing equation 5. This algorithm, used here for
a one-class problem, has two parts. First, centroids ¢; are randomly distributed
over the input space, if possible in regions where one can find input patterns;
one way to do this is to initialize the P centroids c; to the first P input patterns
x;, 1 < i < P. Next, input vectors x;, 1 < i < N are sequentially or randomly
presented to all centroids ¢;, and the centroid c closest to x; according to

llea — 2l < lles — 24ll Vi € {1...P}, 1S a < P (6)

is selected. Then, the selected centroid ¢, is moved in the direction of input x;
according to the learning rule

ca(t +1) = ca(t) + a(?) lIx; — ca(t)ll - M

where a(t) is a time-decreasing adaptation factor, 0 < a(t) < 1. After con-
vergence of this LVQ1 procedure, the probability density of the centroids will
approximate the probability density of the input data, making the regions of
influence of all centroids equiprobable. The reason why using a LVQ1 procedure
will become more clear in the next section.
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3.2  Width factors

A method to estimate the width factors o; of the Gaussian RBF units has been
proposed by Moody and Darken [4]. They suggest to minimize an error function
of the form

Ic.-c-i\? 2
Ew(al...ap)=%zp: f:e‘( - )(ﬂurﬂ)z-Q . (8)

r=1 |s=1 Ir

where @ is an overlapping factor a priori fixed to ensure overlap between kernels
and thus a smooth estimator f. Note that this only takes into account the
locations of the centroids c;.

Setting an appropriate overlap parameter @ is however quite difficult. We
suggest that the width of a kernel j be estimated by the mean value of its
argument, i.e. of ||x; — c;||. In fact, the width is taken to be twice this mean
value to ensure a good overlap between kernels. Further, we propose to estimate
it in parallel with the iteration of the LVQ1 algorithm used in the previous
section to find the locations of the centroids. We thus have first to initialize all
oj to 0,1 < j < P, and then to apply equation

ga(t +1) = (1 - B(t))oa(t) + B(t)2||x; — ea(®)ll (9)

each time a vector x; is presented and a centroid ¢, is selected; B(t) is a time-
decreasing adaptation factor, 0 < 4(t) < 1, which can be chosen equal to af(t).

3.3 Weights

The last parameters to estimate in this RBF algorithm are the weights A;. As
the final goal of the RBF network is to minimize the global mean-square error
Eoms (equation 4) between the function f and the estimate f over the whole data
set D, the first methods chose the weights A; in order to minimize this error,
all other parameters being fixed. We suggest to use the direct method presented
in [2] to compute these weights. By setting the partial derivatives of the global
error E.,,, to zero, we obtain the weights (1 < j < P)

P N
A= (7N [Z m(x.-)y.-] ,§=1<j<P, (10)
k=1 i=1
where
N
(@)j = Z¢k(xl)¢j(xl), (11)
=1
and
or(xt) = ¢(llxi —exf]), 1<k < P. (12)
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4 Optimization of the network parameters

We pointed out in a previous section that the locations of the centroids were
chosen to approximate the probability density of the inputs, but that this choice
need not lead to a minimization of the global error E,,, given by equation 4. The
same comment applies to the proposed heuristic to set width factors ;. However,
the selected locations c; and widths o; reflect the inherent characteristics of
the function f to approximate, and are thus good preliminary estimates of the
optimal factors.

We propose here to use the values found with the above algorithms for pa-
rameters ¢;, o and A; as a starting point for a minimization of the error E,;
given by equation 4, but now with respect to the three types of parameters
together. Of course, it is no more possible to find an analytical solution, as in
the estimation of the weights described in the previous paragraph. A gradient
descent must be used, by iteratively adapting parameters c;, o; and A; in the
opposite direction of the respective partial derivatives of the error:

rz__zz 2 (i — cmn) € ( = )2 _ZP:A,-e—( o )2 ,
mn j=1
a3t [l () (5 (555,
i=1 i=1
'SE_m«.__Z (n‘fc ) _i)\je"( xel) , (1
£ o

where ¢, is the nt? coordinate of centroid ey,. By using a gradient descent on
error E,,, with respect to the set of parameters {¢mn, o1, Ax}, kernel locations,
widths and weights are adapted to minimize error En,, of the approximation f ,
and thus to best fit the function f. Numerical experiments have shown that the
initial parameters found via the procedures of this paper are usually in a basin
of attraction associated with a local minimum that is reasonably close to the
global minimum of the error function (4).

5 Simulations

Figure 5 shows an example of the simulation of the proposed algorithm, and
comparison to the standard Moody and Darken’s one. For the clarity of the il-
lustration, the approximation of a 1-D function on the interval [0, 1] is presented.
Stars on the figure represent the data points. The probability density of the input
data points (z-axis) is constant. Moody and Darken’s method thus converged to
centroids approximately located at ¢; = 0.1,¢2=0.3,¢3 = 0.5,c4 = 0.7,¢5 = 0.9,
which is the result of the convergence of a LVQ1 algorithm on a uniform distri-
bution in range [0, 1]. These locations are efficiently adapted by our optimization
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procedure to best fit function f. Figure 5 respectively shows interpolator f for
the Moody and Darken’s method, after initialization of our procedure, and after
its optimization.
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Fig.1. Approximation of a 1-D function with noise

6 Conclusion

A method to approximate real-valued multivariable functions through radial-
basis Gaussian kernels has been presented. It first estimates values for the loca-
tions, widths and weights of the kernels, and then optimizes these parameters
to reach a minimum in the mean-square error. By comparison with standard
methods where the three sets of parameters are independently computed, in
simulations this method has shown to give a better estimate of the function to
approximate.
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