ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 193-198
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John A. Bullinaria

Neural Networks Research Group, Psychology Department,
Edinburgh University, 7 George Square, Edinburgh

Abstract. We review the problems associated with neural networks learning
from noisy and/or ambiguous training data and propose a simple procedure that
appears to alleviate these problems. By making use of the readily available
output error information, a network is able to choose the correct output targets
from sets of possibilities and generate new targets if any of the correct ones
appear to be missing from the given training data.

Introduction

Consider a system (such as an artificial neural network) that is expected to learn and
generalize from training data consisting of a set of input vectors with corresponding
output vectors. We generally say that the training data is noisy if at least some of the
output vectors differ from the ‘correct’ output vector by some 'small' amount. If this
is the case, it is well known that, unless care is taken to prevent the system from over-
learning (i.e. modelling the details of the noise rather than just the underlying
regularities), the systems generalization performance (i.e. its ability to deal
appropriately with new input data) will be poor.

Sometimes the noise will result in there being more than one distinct output
vector corresponding to a given input vector (and this set of output vectors may or
may not include the ‘correct’ output vector), in which case we say the training data is
ambiguous. Ambiguous training data that arises in other ways, in which the
differences between the output vectors are not necessarily small, will also result in
over-learning problems. Such ambiguous data may occur because:

1. The input information is incomplete.
2. The different output vectors are actually equivalent in some way.

Both causes are familiar to us from reading. First, the same set of letters may be
pronounced in different ways, but given sufficient additional context information, we
know which pronunciation is appropriate. Second, given only a set of letters and the
corresponding set of phonemes for a word, it is not obvious how the letters and
phonemes line up - there will be many possible output targets for each input letter.

It is well known that human brains can handle noisy data and both types of
ambiguity very well, but artificial neural networks tend not to be so successful. In
this short paper we will review the problems involved and propose a simple approach
which appears to alleviate these problems.

Conventional Learning

Let us begin by looking at how a simple input-output mapping is learnt by a
conventional feedforward back-propagation network with one hidden layer. We will
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Fig. 1. Evolution of training (T) and validation (V) error measures for the non-ambiguous
(NA) and ambiguous (A) data during standard (BP) and multi-target (MT) training.

illustrate what happens by considering the simple, but non-trivial, case of a nine bit
cyclic exclusive-or. We split the 512 possible training patterns randomly into 462 for
training and 50 for validation (i.e. testing of generalization ability). Figures 1 and 2
show how leaning proceeds for a network with 100 hidden units, a learning rate of
0.02 and no momentum. We see that the sum squared error score and the number of
output errors decease for both the training and validation sets.

Now suppose we introduce noise into the training data such that there are now
two possible outputs for each input, the original correct output plus another with two
of the nine bits flipped at random. Clearly the network will have problems with this
ambiguous data since it cannot possibly produce two different outputs for the same
input. We see from Figures 1 and 2 that the network first identifies the main
regularities in the data (and hence the correct outputs) and the validation errors reach
a minimum, but then the network goes on to attempt to accommodate the erroneous
outputs. The training data error score continues to decrease as we would expect of a
gradient descent training algorithm, but the number of output errors, the validation
error score and the number of validation output errors all begin to increase again.
This is a typical manifestation of the ‘over-training’ or 'over-fitting' that occurs in
neural networks with too many parameters for the data they are trying to model
(Baum & Haussler, 1989). One obvious solution (from the point of view of Figures 1
and 2) is to terminate the training just as the validation error starts increasing again
(e.g. Morgan & Bourlard, 1990; Weigend, Huberman & Rumelhart, 1990) but at this
point the error measure is still quite large. Other possible solutions involve reducing
the effective number of free parameters (i.e. connection weights) in various ways
such as network pruning (e.g. Karnin, 1990), weight decay (e.g. Krogh & Hertz,
1992) or weight sharing (e.g. Nowlan & Hinton, 1992). Here we propose an
alternative approach that is perhaps more biologically and psychologically plausible:
we learn to ignore the noise.
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Fig. 2. Evolution of training (T) and validation (V) output errors for the non-ambiguous
(NA) and ambiguous (A) data during standard (BP) and multi-target (MT) training.

Multi-Target Learning

Suppose we have several possible target outputs for a given input. Whether one is
right and the others wrong, or they are all equivalent but one is preferable, we need to
choose to train on one and ignore the others. If we had to choose consciously
between the targets we would naturally choose the one that best fitted in with our
existing knowledge of the domain in question taking into account any other
information we might have concerning the appropriateness of eagh target. In neural
network terms this means choosing the target that already gives the lowest output
error score weighted by a prior probability that the target is the appropriate one.

In Bullinaria (1993a) it was shown that, if E o is the output error score for target
o and Py is the 'prior probability’ that target o is the correct one, then by training
only on the target for each input with the lowest value of S=(1- Pqg). E¢ the
network can, under certain circumstances, learn which is the appropriate target for
each input. Lack of space prevents us from going through the full analysis and all
the empirical results here, but intuitively what happens is that by the time the
validation errors would start increasing again the network has settled down into using
only the correct (or best) targets and the other targets are simply not there to cause
any problems. It is important that we have sufficient numbers of hidden units and
training examples and sufficiently small leaming rate that the training proceeds
smoothly, or the network can get stuck with the wrong set of targets, but apart from
that the procedure appears to be quite robust. Figures 1 and 2 show that the learning
curves for our ambiguous data using this multi-target approach (with equal P ¢ for the
two targets) are not significantly different from the non-ambiguous case.

Such a multi-target approach was successfully applied in Bullinaria (1993b) to a
realistic problem in which the different output vectors were not the result of errors but
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Fig. 3. Evolution of training (T) and validation (V) error measures for the correct (C)
and noisy (N) data for standard (BP) and multi-target (MT) training.

were introduced specifically to allow the network to choose which of a number of
possible ways of representing a given output was best. The domain in question was
that mentioned in the introduction, namely reading aloud. The training data here
consists of sets of letters and the corresponding sets of phonemes. Since there is not
generally a one-to-one correspondence between the letters and phonemes, we have
the so-called alignment problem whereby we do not know which is the appropriate
target phoneme for a given input letter. Previously this problem was solved by hand
prior to training (Sejnowski & Rosenberg, 1987). The multi-target approach obviated
the need for such pre-processing of the training data by using a set of equally
probable targets, one for each possible alignment, and allowing the network to choose
one of them. A word like ‘ace’ thus had three targets ( /As-/, /A-s/ and /-As/) and the
multi-target approach allowed the network to learn that /As-/ is the one that ties in
best with the optimal set of grapheme to phoneme rules.

Noise Reduction

Having a network pick the right target from a set of possibilities solves part of our
problem, but what about noisy data in which some of the correct targets have been
lost completely? Again we consider how we would proceed consciously. It is
usually reasonable to assume that the correct data will not be much different from the
data we actually have. Moreover, if a slight deviation from the actual data fits in
much better than the actual data with everything else, then it is likely that the
deviation results in the correct data and we should use that rather than the actual data.
In neural network terms this means also considering targets that differ from the given
ones and then using the above multi-target approach to determine which of the targets
to use. Clearly, we should consider the deviating targets to be less probable than the
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Fig. 4. Evolution of the number of training (T) and validation (V) output errors for the
correct (C) and noisy (N) data for standard (BP) and multi-target (MT) training.

given targets (and the more the deviation, the less the probability), or the network will
be free to train itself on virtually anything it chooses. The easiest way to proceed is
to reduce the targets' probability by a factor F for each bit flipped from the original
target then, in the measure of suitability S = (1 - Pg F™ ).( Eq — ApE ), the
reduction in error score A,E is offset against the reduced probability P o F™ and
changes are only made when there is good reason. Naively, this sounds like a lot of
potential targets, e.g. 2" for each input if there are n output bits. In fact, in practice,
the number of extra targets will be less than n for each given target since (assuming
each change of output bit reduces the probability by the same factor) the best target
with m bits changed can be obtained from the original target by simply flipping the m
bits contributing most to the total error of that target. Moreover, all the necessary
error information is produced in the course of standard back-propagation training.

Suppose we introduce noise into the 9 bit cyclic exclusive-or data used
previously by allowing each output bit to be flipped with a probability of 3%.
Figures 3 and 4 show a typical run in which the training data included 82 output
patterns with one bit wrong and 8 with two bits wrong. We used the same parameters
as before with P o, = 0.8 and F = 0.8 throughout. There are three cases to consider.
First, we check that our noise reduction procedure can learn from the correct data
without unnecessarily changing that data. Next, we train by standard back-
propagation with the noisy data and find the expected over-fitting problems. Finally,
we see that our noise reduction procedure is capable of correcting all the errors in the
training data and ends up with the same perfect generalization performance as the
non-noisy case. In 25 runs with different initial weights, the noisy data was corrected
resulting in perfect generalization every time and in all but one run the correct data
was learnt without any unnecessary changes. This 2% failure rate rose to 14%, 29%
and 50% for learning rates of 0.04, 0.08 and 0.16 respectively.
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‘Discussion

Despite the apparent successes outlined above, there are still many potential problems
with this approach. Firstly, as mentioned before, it is important to keep the
parameters set such that the learning is smooth or the wrong targets are chosen and
unnecessary target changes occur. Fortunately, when the learning goes wrong it is
usually easy to tell: in the one case in our main set of 50 runs which had any incorrect
target changes, there were 116 of them! Moreover, this ‘all or nothing' effect seems
to persist for the less successful higher learning rate cases. Another problem is that,
if we set the probability reduction factor F too low, it will be difficult for the network
to correct all the errors, particularly if there are several in one training pattern. On the
other hand, if it is set too high, the network will make corrections where they are not
necessary and get totally confused. It is not immédiately obvious under what
circumstances the F ‘'window' will exist and be large enough to be useful. It is
possible that we will always have to err on the side of caution and fail to correct all
the errors, in which case we may need to use this approach in conjunction with other
solutions to the over-fitting problem Finally, we have only considered the case of
simple binary input-output mappings with noisy or ambiguous outputs: there are
many other classes of problem we have yet to deal with.

In conclusion then, the multi-target approach to learning from noisy and
ambiguous training data has not yet been shown to be universally useful but the
indications are that it is at least worthy of further investigation.
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