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Abstract. The operation of variable binding has been difficult to
achieve using connectionist networks. Some localist connectionist
models achieve it in a limited form, but are open to the criticism that
they are merely implementations of classical symbol processing
systems. Until now no connectionist system using a distributed
representation has attempted to perform the complex form of variable
binding called unification. We describe a connectionist system that
performs unification directly on a distributed representation.

Introduction.

Researchers in the connectionist camp work with models using two broad types of
representation, those using localist representations (including marker-passing models)
and those using distributed representations. In models using localist representations,
the representations themselves coincide with computational tokens, in such networks
a single unit would represent a single concept.They have been popular with many Al
researchers, however there is nothing in these models that does not appear in classical
symbolic processing models, and localist connectionist systems have been criticised
as being mere implementations of these. A rigorous definition of the notion of
distribution used in distributed connectionist models was put forward by Van Gelder
(1992). The representations formed in a standard feed-forward network can be
considered as distributed as they are context dependent compositions of the input
constituents (Sharkey, 1992). It has been argued that distributed representations
cannot display compositionality (Fodor & Pylyshyn,1988), but this position has been
weakened by some recent connectionist models which demonstrate a form of
functional compositionality when performing structure-sensitive tasks (Van Gelder,
1990). In one of these a model using distributed representations was used to perform
the passivisation of English sentences (Chalmers, 1990). Syntactic transformations
were produced by this model which acted directly on the compressed distributed
representations of sentences, without passing through any stages of decomposition
(extraction) of the constituents. This, together with other model that also perform
syntactic operations on distributed representations (Chrisman, 1991; Niklasson &
Sharkey, 1991), demonstrate that functionally compositional distributedrepresentations
can perform structure sensitive operations without extracting the individual
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constituents, and provide evidence that distributed connectionist systems can be both
compositional and systematic.

Variable Binding and Unification.

Variable binding is usually understood as a process in which symbols are designated
1o represent entities.The ability to handle variables seems to be essential for
connectionist systems if they are ever to perform complex reasoning tasks, so a
demonstration of variable binding by a system using a fully distributed representation
would provide additional evidence for the expressive power of these models. In
addition, if it to be demonstrated that distributed representations can support cognitive
processes equivalent to those demonstrated by symbolic systems, then it will have to
be shown that theorem proving is within their scope. Modern ideas on theorem
proving were pioneered by Robinson (1965), who developed a method for theorem
proving using resolution. Central to this method was unification of first-order terms,
for which an algorithm was constructed and proven correct. Unification can best be
described as a complex form of pattern matching and variable binding, where both the
pattern and the datum (which the pattern is to be matched against) can contain
variables.The unification problem is usually stated in the following context:
Considering two terms of logic built up from function symbols (f,a,..) variables
(X,Y,Z...), and constants (a,b,e,...), is there a substitution of terms for variables that
will make the two terms identical? For example, considering the two terms f(X,Y) &
f(g(Y,a),h(a)) they are said to be unifiable since binding the variable X to the term
g(h(a),a) and the variable Y to the term h(a) will make both terms look like
f(g(h(a),a),h(a)) which is called the most general unifier (M.G.U., intuitively the
simplest of their unifiers). If we try to unify the two terms X = g(X) we find that this
is unsolvable, since the variable X cannot be equal to a term which contains X as a
proper subterm. This is often referred to as the occurs check problem since we have
to check whether X occurs in g(X) in order to solve the unification problem. Many
of the implementations of unification attempted .so far using connectionist
representations have been part of larger inference systems such as production systems,
and all have performed unification using localist representations (Ballard & Hayes,
1984; Sun, 1992). ‘An effective connectionist unification algorithm has been
constructed using a localist representation by Hélldobler (1990).

Performing Unification on Distributed Representations.

We have used Holldobler's scheme to produce a symbolic representation for terms to
be unified, and have forced an autoassociative network to produces a distributed
representation. Subsequently, we have performed unification directly on the
distributed representations. A simple alphabet of constants and variables was chosen
to generate the term pairs to be unified, consisting of two constants a and f, and two
variables X and Y. Four positions were used when generating the compound terms,
functor, 1, 1.1 and 2. This allowed two-argument compound terms such as f(X,Y) or
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f(a(X),Y) to be generated. All possible permutations of the members of this alphabet
were generated to produce a set of two-argument terms, with the restriction that only
f or a appear at the functor position of a compound term (it is not allowable to have
an uninstantiated variable as the principal functor of a compound term). These terms
were then combined in pairs to generate all of the 9216 term pair permutations
possible for this alphabet, and this set of term pairs was then partitioned into training
and test sets for the network.The input representation signifying the two terms before
unification was designed with two different sets of binary units, one set of 16 units
for each of the terms in the term pair, giving 32 units in total. An example of the
patterns generated on one of these sets of units is shown in Figure 1 for the term
f(a(X),Y). In this representation units were given a value of 1 if a particular functor,
constant or variable was present at that argument position, and a value of 0 otherwise.
The output representation had 21 units, an extra row of 4 units as compared with the
pre-unification terms used to signify the propagation of a nested binding to the second
argument position, and an occurs check unit which was set to 1 when occurs check
failure was detected. Unification failure was signified by setting all the units to 0,
with the exception of occurs check failure where all the units were set to 0 and the
occurs check unit set to 1. In the example shown in Figure 2 the two spotted units
are those that become active after the unification of f(a(X),Y) & f(Y,Y) due to the
propagation of the binding Y = a(X) to the second argument position.The distributed
representations for the pre-unification terms were generated by autoassociating them
in a standard three-layer backpropagation network.This resulted in a distributed
representation of each term pair being formed on the hidden layer of network A when
that term pair was presented as input. This process was repeated for the unification
results, the results for all the possible permutations being autoassociated in another
network (network B). A third network (network C) was then designed to actually
perform the unification on the distributed representations formed on the hidden layer
of network A by taking these as input, and producing as output the correct distributed
representations that were expected on the hidden layer of network B. A
backpropagation network was again chosen, but in this case a 4 layer network was
used, as this was found empirically to give better results. This network was only
trained on the training corpus, the test corpus was held in reserve to test the
generalisation performance of the network. Figure 3 shows the complete system with
all three networks and their relative positions in the system.

Experimental Results.

Network C correctly unified 97% of the term pairs in the training set and generalised
to 95% of the terms in the test set. The term pairs incorrectly unified were scattered
randomly throughout both the training corpus and the test corpus, indicating that the
network is not having difficulty with a particular type of term. As a practical
unification machine for theorem proving, this figure may not be acceptable. However
the intention behind developing this model was to demonstrate variable binding on
distributed representations. As such can be judged to have fulfilled that task even
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though it has not achieved 100% accuracy.

Discussion,

This model demonstrates that distributed representations can support variable binding
and unification. In addition it has demonstrated functional compositionality by
showing that a complex structure-sensitive processes can be performed on a
distributed representation. The performance of unification is a more complex task than
those achieved previously using distributed representations, as it involves the
generation of new arguments and the propagation of these to new argument positions.
For example, consider the unification of the term pair a(X,Y) & a(a(Y),a) to give
a(a(a),a), here the new term a(a) has been generated by the unification, and the
constant a has been propagated to the 2.1 argument position. In addition, although
some previous tasks performed on distributed representations have been context
sensitive (Chrisman, 1991; Niklasson & Sharkey, 1991), unification of terms with an
arity of greater than 1 can be said to be sensitive to the context of context, as one
constituent must be evaluated in the context of another constituent, which must then
be evaluated in the context of other constituents. For example in the term pair
f(a(X),X) & f(Y,Y), firstly a(X) in the first argument position of the first term must
be evaluated against Y in the first argument position of the second term, and then Y
(given it's new context a(X)) in the second argument position of the second term must
be evaluated in the context of the X in the second argument position of the first term.
This gives a(X) =Y = X, but a(X) = X is illegal so an occurs check failure must be
signified. The performance of unification using these representations adds further
evidence that distributed connectionist representations can demonstrate
compositionality and support structure-sensitive tasks.We are currently investigating
methods of performing a resolution step on the distributed representations that
represent the variable bindings generated by network C. Resolution is a powerful
inference rule ( so powerful that it is the only rule needed for a sound and complete
system of logic), and amounts to an algebraic cancelling process. From two clauses
that contain a complementary pair of literals (literals that are exactly alike except that
one is negated and the other is not), using resolution we can deduce a third clause that
is the disjunction of all the remaining literals of the two clauses after striking out the
complimentary pair. Unification is used to produce the required variable substitutions,
for example the resolution p(X) and not (p(a)) requires the binding X = a as only
this value would produce the desired contradiction. The performance of this inference
rule by an extension of our model will add further evidence that distributed
connectionist representations can perform complex reasoning tasks.
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Figure 1: Example term f(a(X),Y).
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Figure 2: Results for the terms f(a(X),Y) & f(Y,Y).
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Figure 3: Complete unification system.
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