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Abstract : We propose a new learning algorithm for multi Multi Layered Per-
ceptron (MLP) architecture useful for complex classification. First, on the prin-
ciple “divide and conquer”, a quantization is performed on the input space. One
classical Neural Network (NN) is devoted to each subregion that results from
this quantization. A cooperative learning procedure allows to train the NNs in
such a way that NNs belonging to narrow regions can participate to and improve
the local convergence. The mathematical characteristics of this new learning
algorithm are presented below and are tested on a function modelization.

1. Introduction

Connectionism has shown great abilities for classification problems from a theoretical
point of view. A large amount of work has been done to increase NN models capacities
in term of processing time, mainly for the learning phase [13], but we are still far from
needed performances for complex database classification. Studies about the limits of
the learning capacities [4] show that it is nowadays irrealistic to build one classical
connectionist model, such as MLP, to solve this kind of problems.

A trivial solution would consist in dividing the input space in subregions and inde-
pendently processing each subregion with a classical NN. This idea was first pre-
sented by Jacobs and Hinton in 1988. In “Adaptative Mixtures of Local Experts” [5]
they present the way of using several NNs, where each NN(i) is weighted by the prob-
ability that the corresponding input belongs to class i. But in this kind of algorithm,
each expert learns alone. :
We improve this solution from two points of view. First, in the space quantization is
performed through an online dynamic Vector Quantization (VQ) algorithm [1]. This
fast online algorithm offers an efficient qualitative VQ which will lead not only to
belonging probability estimation, but also to quantization relative to the underlying
complexity of the function [11]. This algorithm can be pursued at will on specific sub-
regions [2]. Second, we adapt the backpropagation algorithm[8][12] to arouse a coop-
erative learning between each expert (i.e. network devoted to each region). This
learning improves global classification performance, and processing time. This will
enable the algorithm to deepen learning of specific subregions, if needed.

This later point is developped in this paper: We first present the basic Lateral Contribu-
tion Learning Algorithm (LCLA) before highlighting its good performances in mathe-
matical function modelization test. Then we present some theoretical considerations
with regard to its convergence.
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2. LCL Algorithm

For a set of subspaces 6e @ cR’, determined with . regard to the behavxor of
x,0 - F(x, 8) by cutting up the space © (with for example a VQ), we are training a
set of neural networks - NN (0) to learn the functions x— f¢) . For this algorithm
each of these NNs has an identical architecture. The Lateral Contribution Learning
Algorithm is adapted from the backpropagation leammg algorithm (BPA) for this kind
of architecture. For each NN (6,) (the NN devoted to subregion )» We transform the
BPA in a continuous gradient of error descent, with regard to the e space topology, by
adding to the gradient of NN (8,), a contribution of gradients of NN(8) (9 close to
6,). For a NN (90) the connection update at discret time ¢+1 is :

W, 0 = _ej:c(e eo)VWA(fe(xm) S i) JO ()

where W(8,) is the synaptic welght matrix of NN (8,), € is the learning rate, Ic(6 - 6,)
is the lateral contribution distribution function, A(.) .is the error. function for the
desired output (f, (x,,,) and Oy e (Fra1)> the output of NN (8,).
We underline that when 1c(8-6,) is a perfect Dirac Ic(8- 8y = this
algorithm is the basic backpropagation learning algorithm.
In the following we use a continuous kernel for ]ateral conmbutmn distribution func-
tion as: ~ :

‘{1 if0 = 0,

0 else

lc(G—Oo) = h(C’D(e’ eo)’ C(e) ) § (2)

where D (8,6,) denotes the function distortion between subregion 8,and 0, C(0)
the complexity of the subregion @ and { e [0,o[ defines the sharpness rate of the
kernel.

3. Algorithm evaluation

In this part, we test our model with a simple mathematlcal function modehzatlon, cho-
sen to highlight specific properties. Let F be the function from R? to R:

2. 2 : )
F((x0)) = ee'(e +7) where € [-2,2]ixe [-2,2] (see fig. 1)

0.4t

fig. 1: F( 8,x) function:
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We have chosen, for this simple example, a deterministic way (not optimal) to cut up
the @ space: this function is divided in 41 subregions along the @ axe (step 0.1). For
each subregion 6 = {-2,-1.9,-1.8,..1.9,2} we take one NN (a 1x2x1 MLP with one
bias neuron in first layer) fed with x€ [-2,2] . The LCL Algorithm is applied on
these multi MLP architecture with the following kernel:
-{D(8,65) C(8)
h(§,D(8,8),C(8)) = e 3
where D (6, 8,) = |8,-8| (Buclidean distance) and C(8) = -In(p(8)) whith p ()
is the probability of the subregion @ (subspace energy function).

4 0 ¢ =25
8, = -1

5 T 13 3

fig.2: example of kernel A (.)

To enlighten the importance of the additional term of the lateral contribution in the
backpropagation learning algorithm, we test our model with different kernels (3) by
changing the § values from 2.5 (too small values lead to chaotic behavior).

The fig. 3-4 show, for {—> (BPA) and { = 2.5 (LCLA), the error vs 8 (41 NNs)
and epoch (120 epochs).

fig. 3-4: Error(x100) vs 8(NNs) and epochs for Dirac
kernel (left) and {=2.5 (right)

These results seem to indicate that the quickness of convergence is highly increased
when the lateral contribution is employed. This point is more carefully studied below.
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4. Mathematical point of view

4.1 Formalization

The situation described in seétion 2 can be formalized in the following way:
We consider a continuous family of functions {f,(), 8 € ©}, for instance, for the dis-

tance:
]Veo -felﬂ = suplfeo(x) —fal (x)l
X

The error between the desired output fy and the actual one is given with a loss func-
tion [ of the form:

1(8) = [AC®,g@)p(dD) O

where p is the probability distribution over the input space (or learning set).

What is natural to search, is a set of connections { W(0)} 0 < @ coONtinuous with respect
t0 9,ie: -+ W(0) has to be continuous. For this purpose we define a new error func-
tion for each g, by:

L(W,8p) = [Ic(8-8)1(fy (), by ())d®  (6)
e

lc (8-8,) is viewed as the strength of the influence of @ (the error at g ) at the point
8- ;
Thus we have the stochastic learning algorithm (of gradient type):

Wt+1(60) = W'(eo)—ﬁjlc(e—eo)le(fe(x“.1):¢w1(9)(x,+1))de O
e

where x  , is chosen at random from the distribution p, VyA(.) is the gradient
with respect to W.
The O.D.E [7] describing the mean behavnor of W, writes:

2wy = —ch(e—eo)Vwl(fe(.),¢wl(e)(.))d6 ,6e0 (8

Assoonas 9 —Vy, Efe( ) b ) () is Borel-like, 6 — W (8) is continuous.

Now suppose that lc i¥ sufficiently cldse to the Dirac means at 0, by a continuity argu-

ment, if W'(0) is a continuous family of local minimum of I( fo(): 0y ® )). it is
still a family of local minimum of L (W, 8) .

Consequently, the learning algorithm proposed can minimize each of the
lg fo () dw e (.)) while preserving some continuity properties of - W(@) , as a func-
tion of @ . This is'true at least where Ic is sufficiently sharp (numerical examples show
that it works well even if Ic is not so sharp).

4.2 Heuristic:

The “intuitive” underlying idea is a sort of cooperation principle. When we update
W(6,) , we not only use the gradient of the error at 6, but we take in account the gra-

dient of the errors of @ neighbors of 8, . If at 6, butalsoatany 6 near g, w8y

is at the edge of a deep well of /, it will attract all its neighbor in the well, because its
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gradient is large and w(@) , for 6 close to 8, is close to W(eo) On the other hand
and if lc is sufficiently sharp this has no far range influence, this “cooperation princi-
ple” is only local. And the snowball effect spreads this influence from one NN fo its
neighbors.

5. Optimization of LCLA

Of course, we can use existing optimization of the backpropagation learning algorithm
[13] to increase the quickness and find the edge of a deep well of [ in one 6,. When
this edge is found we can use an algorithm, such as BFGS [9][3], to go rapidly to this
local minima and then go back to the previous optimized LCL algorithm to search an
other edge of a deep well of [.

We can also improve it by an optimization of lc(.) kernel, by defining one kernel per
connection. The heuristic of this idea is that each feature extracted by one weight in
NN (8, could be the same for an other NN (8). So, each component of this new kernel
(matrlx indexed by ij) can be rewriten as:

h; (£,;(8,8), D (8,8y),C(8)) = (3b)

where €;(8.8p) is the lateral contribution rate for the connection ij with regard to

and 0

This 19ate can be on-line adapted with regard to the comparison of W, and the
Vw 1(.) direction for each pair {6, 8,} at each step, or off-line adapted with regard to

the symmetnes of the function F(.).

This off-line adaptation can be included in the term of distortion D (6, §,), allowing

the VQ algorithm to move two classes closer than if the term of distortion should only

take the input space topology into account.

'{U (e, eo) D(s, 90) c(9)

6. Conclusion

The main improvements of LCL algorithm are not only the quickness of convergence
of learning processing but also a new insight of the synaptic weight, showing that the
behavior of a neural network in context 8, is directly linked to the behavior of every
NNsin @ closeto 8. This link is due to the strong constraint that @ — W(9) must be
continuous. It is now natural to try to merge these NN into one with synaptic weights
estimated through the behavior of context 0 .

Accordingly, we have developed an architecture for weight estimation named OWE
(Orthogonal Weight Estimator) and tested it on control problems(5].

The ongoing studies correspond to testing the LCL algorithm for more and more com-
plex input space, and defining generalized models to embed LCLA and the on-line
Vector Quantization [6].
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