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Abstract. Let us refer to as a decoding function of a trained Kohonen Map
(KM) a function that estimates an input vector from the knowledge of the
unit it activates (the winning unit). The reference vector associated to a
winning unit usually provides the decoded value, but it is not necessarily
optimal. For a typical class of interactivities between the units of the
competitive layer of the KM, and assuming that the finite training sample of
the KM can be seen as the set of equiprobable elementary events of a discrete
probability distribution, we derive a first order approximation to a decoding
function with an improved mean reconstruction error. The enhanced decoder
is successfully tested on synthetic data.

1. Introduction

The Kohonen Maps (KMs) connectionist model [1] is an emerging technique for
unsupervised data analysis which maps a feature space onto a low-dimensional lattice
of reference vectors, while attempting to preserve some topological properties of the
original sample distribution. The vector quantization performances over the training
set could also be a quantity of interest, aware though one may be that the topological
constraints over the reference vector layout will entail a fairly suboptimal mean
reconstruction error. In this paper we address the issue of defining a suitable decoding
function: from a trained KM of which the reference vectors and the number of training
patterns that win on each cell are known, we estimate the mean value of the training
samples belonging to the receptive field of any given cell. It should be pinpointed
that the reference vector itself is not placed at the centroid of its receptive field, unless
the algorithmic topological constraints have faded out during a lengthy late stage of
the learning process, in which case a the KM algorithm ends up by implementing a
stochastic version of the unconstrained K-means algorithm [2].

2. The Reference Vectors Layout

In this section the connectionist algorithm will be briefly described and then a useful
characterization (5) (8) for the reference vectors of a KM will be recalled [3]. It states
that if the finite training sample S of a KM is seen as the set of equiprobable
elementary events of a discrete probability distribution, then the map's reference
vectors can be interpreted in terms of weighted means of the elements of S, with
weighting coefficients that correspond to the interactivities h (3) that have been used
at the end of the learning phase. We will use the same notations as Kohonen [1] for
easier cross-reference.
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2.1. Kohonen map

Let us consider a fully connected feedforward network with two layers of units. The
input layer is fed with a feature vectors x = x(f) € S C R”. The formal neurons in
the output layer are organized in a two-dimensional lattice (or grid) and are referred to
by their position vector Tiz(isiy) 1<i <N. A topology is defined on the grid by
means of some distance d(r,-,rj) = d,-j , like the Euclidean or Manhattan distance (dij =
max{liy - jjl, liz - j21}). Each output cell also represents, through its fan-in weight
vector, a variable reference (or codebook) vector m(t) € R™,

At step 1, either during the learning or the retrieval phase, the squared Euclidean
distance E between current pattern x(¢) and each reference vector m(?) is computed:

n
EGx(@)m(0) =l x(t) - m (1) % = 2 [x;(t)—my (t)]2 0))
=1
Let us denote by ¢ € {1,..,N} the index of the best matching reference vector:
c(x) = argmin I1x(t) - my(0) I> )
)

The subset of input space where c(x) = i is referred to as the receptive field RF; of
m;. A step of the learning algorithm consists of presenting an input pattern x(f) and
updating every reference vector m () proportionally to the interactivity h(r;r.) =h;,
between unit 7,(f) and the winner unit r (1)

mi(t)(————-mi(t)+£(t)h,-c[x(t)—mi(t)] ‘ 3)
The interactivity h is often a positive decreasing function of the grid's distance d.
Normally, the learning rate &(t) decreases during the learning process. This holds true
for h as well, but in the following sections we will have to consider a stabilized h®
value - the farget interactivity - corresponding to the final steps of the learning phase.

2.2. Characteristic equation

If the input data have been generated by a discrete probability distribution, then
(almost surely) no reference vector layout m = {m;, 1 <i < N}will be such that an x
falls on the border of adjacent receptive field. Typical examples are problems where
generalization over unseen cases is not included, so that the available finite training
sample S represents the whole probability distribution. Assuming - for simplicity -
that S consists of T equiprobable inputs x, we can easily deduce from (3) that the
average change of m; on a single learning step is:

Am,-:—;: Zh? [x—my] @

ic(x)
xeS
Possible stable solutions need Am; to be zero, yielding Kohonen map's reference
vectors £; which obey to the following characteristic equation:

1 T
thc(x) xeS e
xeS

Given the above restrictions for the input probability distribution, strong evidence has
been shown in [3] for supporting the validity of characterization (5) which expresses
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that the codebook vector associated to a neuronr; should be close to the barycentre of
the input set S, weighted by the interactivity coefficients hiq(y).
In the remaining part of this paper we will consider a single typical class of target
interactivities H*:

Hg.‘ =1(d;; = 0+aK(d; = 1) ©
1 is the indicator function and 0 < & £ 1. For & = 0, equation (3) simply implements

a stochastic version of the K-means algorithm [2], and equation (5) then states that
any reference vector should be close to the centroid of its receptive field RF (7; denotes

the cardinal of RE;):
1
Hi== X
i xeRF,

0)]
Whatever the distance d, o > 0 in (6) means that the receptive fields of nearest
adjacent neurons to a given cell are somehow taken into account when the algorithm
settles down. If A; = {j, dij =1} denotes the set of indexes for these neurons, then the

characteristic equation (5) becomes:

1 A 1
pie——t | Tx+a Tx| 2 —L—{si+a Is;| ®
Li+o Etj eRF, j€A; Li+tao th A,
, XERL; : . JE€A;
JeA; x€RFj JEA;

where we have denoted by S; the sum of the inputs belonging to RE;.

3. Decoding Functions

The following problem is addressed: Assume that from a trained KM we know only
the reference vectors m; (= y1;) and the corresponding numbers 7; of training patterns

that would win on each cell. The underlying distribution of interest is the uniform
one over the training sample S, which however is no more available. Given an
observed c(x) = i value, what is the best guess for x ?

The KM model is put into the vector quantization frame, briefly described below.
Then we show that the straightforward and natural estimator m(y) can be improved

(in terms of mean square error) for the H® target interactivity family (6)

3.1. Vector quantization

Vector quantization is a data compression method where the vectors x(¢) € S are
encoded onto a smaller set of reference vectors fi; € R", 1 <k < K. As with

Kohonen's algorithm, the code index c(x) corresponds to a nearest neighbour
assignment (2). The customary goal, however, consists of minimizing the mean
reconstruction error R(u):

R =7 3 =gt cnf” <9>

xeS
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The most commonly used decoding function ¢ corresponds to mere nearest neighbour
assignment Q(i,c(x)) = Uex). While nearest neighbour decoding is optimal for K-
means reference vectors (7), one may realize from (5) that over a Kohonen network it
will perform badly in terms of reconstruction error as and when the target interactivity
function spreads out [4]. In the following section we will derive a first order

approximation to the correct decoding function ¢ for an H% interactivity (6).

3.2. A decoding function for the Kohonen map

If S; were known, then the best estimator of ¢ for the quadratic reconstruction error
criterion (9) would obviously be the mean value S;/t;. However, the S; sums may be
approximately recovered from the m; (= 1) values by "inverting" the reference vector
layout equation for HZ (8).

For a zero order approximation with respect to ¢, (8) yields of course S; = ¢; u; (D).

A first order approximation is then obtained by substituting in equality (8) the Sj
terms by s Ge Ap:

1

pi=———|Si+a Ytipn; ‘ (10)
Li+a ztj jeAiJ I
JeA;

When 7; # 0 - this is true for the empirical input distribution when a realization c(x) =
i has been observed - we can derive the desired decoder ¢%:

%zui—a 5, tles-s)= 0"t an

With respect to formula (7), the neighbouring reference vectors H; (GeAjactasa

repeller for the mean value S/t; of the receptive field RF;, proporuonally to the
relative firing rates tjlt;.

4. Experiments

The decoding function & has been successfully tested on artificial datasets. Ten
trammg samples consisting of 100 vectors regularly distributed on the unit square of

%2 have been mapped onto square kxk grids, with k =4,6,8,10 or 12 (T= 100, N =
kxk). Such synthetic data, while reminding us a traditional benchmark example where
the Kohonen map has to represent the unit's square uniform distribution, have a
training sample size T that is small enough to induce notably different discrete input
distributions. The underlying continuous distribution consents to replicate the tests
under similar conditions, and eventually average out irrelevant statistical fluctuations.

The results are summerized on table 1. Fifteen different target interactivies from the

H family have been used for every network's size and training set. The corresponding
«a values are provided in the first column of the table. For a given ¢, any learning
session consisted of two phases. First, widely spread initial interactivities (to foster
the reference vector expansion) are progressively shrunk over 30 epochs toward the

desired H® value. Then, 10 additional leaning epochs are carried out with the target
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interactivity, to push the reference vectors into getting closer to a characteristic layout
() (®).

For each kxk network, the first column gives the mean reconstruction error R (9)
with respect to the actual reference vectors, and the second column corresponds to the
algebraic gain when the proposed decoder ¢% (11) is used for computing R. The
figures are averaged values over the ten experiments sharing identical o and k
parameters, and have been multiplied by 10.000 to ease the reading and condense their
format.

Useful lessons can be learned from table 1. As a function of o, the gain for using
O%(u,i) in place of ; is increasing for low o values, reaches a maximum for o =
0.167 and then decreases to end up in a loss. The overall behaviour is easy to
understand: for low ¢, the quantity [¢#(uL,i) - ;] is small (11) and the decoders
cannot differ by much; for larger ¢, the first order approximation will progressively
fail. The range of values for which the gain is positive has been highlighted with a
grey background. As though it made up for overfitting, the relevance of formula (11)
appears to increase with the N/T ratio: not only the use of ¢& becomes safer - larger

o values still lead to an improvement for R -, but it also results in increasingly
appreciable relative gains.

o Network Network Network Network Network
4X4 6x6 8x8 10x10 12x12

Table 1. For each network, the left column gives the average mean reconstruction
error (9). The right column gives the average gain obtained by using the proposed
decoding function.
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To check further the validity of formula (11), R has also been computed with several

¢ﬂ decoding functions, for B values that do not correspond to actual H® target
interactivities (B # 0). Plotting R against § obviously yields a parabola, of which the
minimum was always obtained for § = a.

5. Conclusion

While it is admittedly unusual to consider the quantization performances of a KM, the
fact is that a nearest neighbour decoder does not properly take into account the
constraints induced by the learning algorithm. For a commonly used family of
interactivities (6), it is possible to define a first order approximation to a decoding
function that entails a smaller mean reconstruction error over the training set.

- Experiments on synthetic data have confirmed the viability of the approximation, and
suggest that the proposed decoder should be particularly useful when the training
sample size is small with respect to the number of available reference vectors.
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