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Radial Basis Functions in the Fourier Domain
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Abstract. We demonstrate a relationship between the singular values of the design
matrix and the discrete Fourier transform of the radial function for radial basis func-
tion networks. We then show how regularisation leads to high frequency filtering of
the network output. In certain circumstances, this allows the network parameters to
be chosen a priori to appropriately bias the learning process.

1 Introduction

Linear radial basis function networks modelling functions from R* -+ R are charac-
terised by a set of m centres {c; € R"}7Z; in a model of the form

flx) = Z w; h(x —¢c;), (1)

j=1

where b : R* — R is a fixed symmetric function and the weights {w; € R}, are ad-
justable parameters. The network learns from a training set {(x;, ¥;) };-., by minimising
a cost function such as

P m
Clw) = Y (- fx))*+ 2> wi. )
i=1

i=1

The first term encourages fidelity to the training set, the second discourages roughness
in the output function and the two are balanced by the regularisation parameter \. This
is zero-order regularisation [5], also known as weight-decay [3] and ridge-regression
[6]. Substituting (1) in (2), differentiating with respect to each weight and equating the
results with zero locates the minimising weight vector, w € R™, as the solution of the
simultaneous equations

P p
3 fx) h(xi—ej) + X w; = Y yih(xi—¢j), ©)
i=1

i=1

for 1 < j < m. The solution is

w = (H'H+XI) 'Hy, @
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where H € RPX™ is the design matrix, H;; = h(x;—c;), I theidentity andy € R? the
vector of output training values. H can be replaced by its singular value decomposition,

H=USV'. , &)

{u; € RP}_, (the columns of U) and {v; € R™ }j; (the columns of V) are the
orthonormal eigenvectors of HHT and H H, respectively. Since we assume p > m,
there are mn singular values, {s;}7%, in descending order, lying on the diagonalof S €
RPX™ . Substituting (5) in (4) and multiplying both sides by VT we obtain

Tg — 5§ T
VjW - )\2+S§ujy’ (6)

for 1 < j < m. The network output over the training cases is f = H . Multiplying
both sides by U™ and using (5) we get

I _uly, )

forl5j§mandu;rf=0form<i5p.

2 Infinite Data and Centres

In the limit of infinite centres the model (1) becomes

169 = [ w©hx-e)de = sk, ®

where ‘x’ stands for convolution, The convolution is only possible due to the particular
nature of radial functions and is not a feature of other types of bases such as logistic
functions or polynomials. If the training data is also infinite then the m relations (3)
become the single functional relation

((w * k) ¥ h)(c) + Nw(c) = (y*h)(c). )
Taking Fourier transforms of both sides of (9) and employing the convolution theorem
we can solve for the Fourier transform of the weights as
Hv)
A2 + H2(v)
where v is a frequency vector in units of cycles per unit length (cpul). Then Fourier
transforming (8) and using (10) gives

W) = Y(v), (10)

H*(v)

FO) = w3mg)

Y(v). (11)
Although equations (10) and (11) are idealisations obtained by replacing finite sums
with continuous integrals, they bear an interesting resemblance to, respectively, equa-
tions (6) and (7). The resemblance suggests that the index j is related to frequency, and
the singular values s; are related to the Fourier transform H (v). In the next section we
investigate these relationships with the aid of a simulated learning problem.
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3 Finite Data and Centres

Consider the following example: a scalar input (n = 1), p = 100 equally spaced training
inputs z; € [—10, 10]; m = 50 equally spaced centres in the same range and a Gaussian
radial function, h(z) = exp(—z?/r?), of width r = 1.67 (see section 4 for the choice
of this value). Figure 1(a) shows a sample eigenvector, vio € R, corresponding to the
10th largest singular value, by plotting component values against centre positions.
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Figure 1: (a) The eigenvector of the 10th largest singular value. (b) Its discrete transform. (c)
The dominant frequencies of the eigenvectors of the largest singular values (circles) compared
with the spectrum of the radial function (solid line). The dashed line indicates the value of 2. (d)
The high frequency filters Q; (circles) and Q(v) (solid line).

Note the sinusoidal shape with a dominant frequency of #19 = 0.25 cpul, the fre-
quency at which the discrete power spectrum attains a maximum (figure 1(b)). The other
eigenvectors show similar structure with their dominant frequency, #;, depending on
the size of their singular value, s;. The (squared) singular values are plotted as small
circles in figure 1(c) against dominant frequencies (up to the resolution of the discrete
transforms—about 0.05 cpul). There is a close relation to the square of H (vy), the dis-
crete Fourier transform of the radial function h(z), shown by the solid curve. H{v;,) was
generated from samples with the same separation as the centres (Ac = 20/(m — 1)) but
taken over a wider range (z € [—40, 40]) to obtain finer frequency resolution (Av =
0.01 cpul) and avoid leakage effects [1]. The dashed line in figure 1(c) shows the size
of the square of the regularisation parameter, A = 8 x 10~3, and crosses the transform
(solid curve) at about 0.5 cpul (see section 4).

305



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 303-308

The small circles in figure 1(d) plot 7;, the dominant frequency of the j-th eigenvec-
tor v;, against

s?

Qj 2 (12)

= )\2+s]2-’

while the solid curve plots vy = k Av, the k-th frequency in the discrete transform,
against

B

Q) = 5 Fnon (13)
The effect of the factors Q) ;, which appear in equation (7), is to remove high frequency
components from the output of the network. The critical frequency v, occurs where
sj = A, the cross-over point in figure 1(c). Since s;, as a function of frequency, is
well approximated by H (v) (figure 1(c)) and since the discrete transform H(v)isa
scaled (by 1/Ac) version of the continuous transform H (vx) [1], it follows that the crit-
ical frequency can be estimated by solving A = H(v)/Ac. In our example we used the
Gaussian radial function h(z) = exp(—22/r?) for which

H®) = rr exp(-n2r?v?) .

The critical frequency is therefore

1
1 Var\]?
Ve = 7_1‘—’;‘. [ln()\AC>} . (14)

4 Choosing the Best Parameters

The RBF network as formulated in section 1 has three parameters: the size r of the ra-
dial function, the regularisation parameter A and the number m (or separation Ac) of the
centres (we assume the centres are arrayed over a fixed range). To show how the analy-
sis above can be useful for the selection of these parameters, we extend the example in
section 3 and consider a range of possible values for 7 and A (keeping m fixed at 50 for
simplicity).

Figure 2(a) shows a target function (solid curve) and p = 100 samples (dots) cor-
rupted by white noise of size ¢ = 0.25. The circles in figure 2(b) show the discrete
power spectrum of the sampled data. The white noise causes flattening of the spectrum
at high frequencies at an expected level of po? = 6.25. Also shown in figure 2(b) are
the discrete spectra of the target function (dashed curve) and the network output (solid
curve) after learning from the sampled data. The network uses values for the parameters
r and A derived below.

Figures 2(c) and 2(d) are contour plots of critical frequency (14) and mean square
error (MSE) as functions of r and A. The MSE is between the target function and the
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Figure 2: (a) The target function and a set of noisy samples. (b) The power spectra of the data
(circles), the target function (dashed) and the network output (solid). (c) A contour plot of critical
frequency (14) as a function of = and log(}). (d) MSE (logarithmic contours) as a function of r
and log(\). A star—also shown in (c)—marks the position of the minimum.

network output over a large test set. The lowest MSE values in figure 2(d) are concen-
trated near the contour v = 0.5 cpul in figure 2(c), with the minimum value (marked
with a star) near r = 1.67 and A = 0.008. These were the parameter values used in the
previous section and for the network whose output spectrum is shown in figure 2(b).

As r decreases along the v, = 0.5 cpul contour line in figure 2(c) MSE in figure 2(d)
gradually increases. This is due to widening of the radial function transform H (v) and
consequent raising of the low singular values such that the factors Q; produce a less
sharp cut-off and allow too much noise to filter through. At the other extreme, where
r is increasing along the same contour, MSE suddenly becomes unstable because the
transform becomes so narrow and the singular values (and \) so small that the matrix
inverse in equation (4) becomes numerically unstable.

5 Discussion

The analysis above suggests interpretations for the RBF parameters Ac, r and A in terms
of spectral analysis. The separation between centres, Ac, clearly plays the role of sam-
pling rate and determines the maximum (Nyquist) frequency present in the unregularised
output. The radial function width, r, sets the relative strength of the different frequencies
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through their associated singular values. The radius and A, the regularisation parameter,
together determine the cut-off frequency. The best cut-off frequency, and consequently
the best values for r and A, depends on the lowest frequency at which the noise domi-
nates the signal, which in the example is about 0.5 cpul (see figure 2(b)).

In real-world problems the input variable is often a vector (n > 1) and the training
data rarely comes in a neat array. However, the conclusions remained unaltered after
further simulations which we conducted with multiple dimensions and randomly chosen
input points and centres. In particular, the best parameter values still corresponded to a
cut-off frequency determined by the spectral characteristics of the signal and noise.

While an examination of the spectrum of the training data might prove an effective,
if rather awkward, method of estimating the critical frequency (and hence the best net-
work parameters) there are other much more convenient data-dependent ways of choos-
ing good network parameters (e.g. cross-validation [4]). Consequently, we suggest the
explicit relation between network parameters and critical frequency be used as a method
of designing good bias into the learning process [2] from a priori knowledge of the criti-
cal frequency. Many practical problems will not have this kind of information available,
but some will, particularly in signal processing and time series prediction.

For those problems which are able to take advantage of this and other kinds of a
priori knowledge the burden on the data to convey all the information about the target
function is reduced. This is particularly important when there is only sparse coverage
of the input space, as in many of the most challenging problems in pattern recognition,
and extrapolation rather than interpolation is required [2]. The work reported here can
be viewed as a method of implementing a particular kind of knowledge (high frequency
cut-off) in a particular kind of learner (regularised radial basis functions).
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