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Abstract - Metastable states are analysed for a simple Kohonen Neural Network
(KNN) using the ODE method. Normally the ODEs are determined for each possible
configuration of the neuron weights. By comparing the trajectories of the ODEs of the
neuron weights and those obtained from simulation we are forced to rethink how the
ODEs should be formed for the KNN before a complete analysis of the self-organisation
process in the KNN can be analysed with the ODE method. It is shown that the ODEs
predict better what happens in practise if the general ODEs are formed by using a
weighted average of the ODEs for each possible configuration of the neuron weights.
The weight accorded to each configuration depends amongst other things on the type
of gain function used. :

1 Introduction

The KNN [1] is a biologically inspired algorithm which models the biological
phenomena of retinotopy, or the formation of self-organised maps between the
retina in the eye and the cortex in the brain. In general self-organisation implies
that adjacent inputs to the retina are coded to adjacent regions of the cortex.

In one dimension the process is modelled as follows ; each neuron has a neuron
weight X; with 1 < ¢ < N. First the neuron weights are randomly initialised
and then a series of random inputs w are presented to the network. At iteration
t a winner neuron v is chosen such that ,

| Xo(t) —w(t) | < | Xe(t) —w(t) | VE (1)
Each neuron weight is then updated as,
Xt +1) = Xu(t) + a(Dh(v,)(Xe(t) — () VK ()

The gain function a(t) € (0,1) and normally a(t) — 0, t — co. The function
h(v, k) is referred to as the neighbourhood function, and normally is one forv = k
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and decreases as | v—k | increases. If the algorithm is allowed continue for many
inputs the neuron weights will organise, in the one dimensional case this corre-
sponds to the neuron weights being in one of the two following configurations
X1 <Xy<...<Xnyor X; >Xo>...>Xn [2]. In general a configuration
is denoted by C; and defined as being one particular ordering of the neuron
weights. Sometimes if h(v,k) is badly chosen the neuron weights can become
trapped in disorganised configurations. This effect which is highly undesirable
was first suggested by Ritter and Schulten [3] to be a result of the existence of
metastable stationary states in disorganised configurations. Tolat (4] has anal-
ysed this situation using a system of energy functions. He finds that if certain
conditions are satisfied by the neighbourhood function then these disorganised
metastable states can be avoided. Erwin et al [5] have also analysed the problem
of metastable states using a set of ordinary differential equations. They proved
that for the one dimensional case when the distribution of the input signal is
uniform that if h(k,v) is convez then the only stationary states are in organised
configurations. They also give extensive simulation results which back up their
theoretical work, and show how the existence of disorganised metastable states,
even if they do not trap the weights in disorganised configurations, considerably
slow down the organisation phase of the neuron weights.

In this work metastable states are also analysed using the Ordinary Dif-
ferential Equation (ODE) method, a technique for analysing the convergence
properties of stochastic processes [6], [7]. This method has already been applied
to the analysis of the final convergence phase of the KNN in [8], [9]. However
here we are interested in how the ODE method can be applied to the KNN algo-
rithm for the analysis of self-organisation. In section 2 a brief description of the
ODE applied to the KNN algorithm is described and in section 3 an example of
a particular KNN is described. By comparing trajectories of the neuron weights
obtained from numerical solutions of the ODEs to the trajectories obtained from
simulation, we arrive at an understanding as to how the ODE method should be
applied to the KNN to analyse self-organisation.

2 The ODE Method and the KNN

With each neuron weight there is an associated ODE given by the average of
the update h(k,v)(Xg(t) — w(t)) over all possible winner neurons v. The average
is normally performed for one configuration of the neuron weights [5]. The
resultant ODE is of the form,

N
dz _ Z h(v, k) / (ze —w)dp(w) VE (3)
dr =1 Q,

where p(w) is the probability distribution of w, and Q, the Voronoi Tessellation
cell of the winner neuron v. Stable stationary points X, of these sets of ODEs
are possible stationary points [6] of the stochastic process X = {X;, Xa,..., X~}
represented by the neuron weights. A working definition of a metastable state
is now given as,
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Definition 1 A ‘metastable’ state in configuration Cy is a stationary point of
the ODE’s relative to Cy, which lies in Cy, and is considered a disorganised state
if i is not an organised configuration.

3 An Example

We now analyse metastable states in a one dimensional KNN with a uniform
probability distribution for the input and N = 3. The neighbourhood function
is given by h(0) = 1, h(1) = a and h(k) = 0 Yk > 1. Given this KNN there are
6 possible configurations of the neurons Cy,...,Cs.

G = {(z1,22,23):0< 21 <2 <23< 1}
C: = {(z1,22,23):0< 2y <z3< 29 <1}
C; = {(z1,22,23):0< 22 <z <23<1}
Ci = {(z1,22,23):0<23<22<2; <1} (4)
G = {(z1,22,23):0< 23 <2 <22<1}
C = {(z1,22,23):0< 2 <23<2; < 1}

Some known facts about this simple setup include, C; and Cy are absorbing[2],
that is if x(¢,) € C; then x(t) € C; Vt > t;. Also, if x(t;) € Ca then x(t) €
C2UCy Vt > t;. Similar relations exist for the pairs of conﬁgura.tlons (Cs,C1),
(C4,C5),(C4,Cg). Writing the ODEs for configuration Cp gives, = -

2 = —0.5((¢1 + 23)2 — 21)® — 2} + a((1 — 21)* = (22 + 23) 2 — 21)?)]

d22 = —0.5[(a - 1)(:::1 + 225 — Tza)(z1 — 23)/4+ (1 — 25)? — azl]

3
Il

—0.5{(a — 1)((z2 + 23)/2 = 73)? = ((z1 + 22)/2 — z3)*) + a(1 - xa)z]( )
5
Figure 1 shows a plot of (£100,Z200,L300) the stationary state of the set of
equations (5) for each value of a varied between 0 and 0.5. From the figure it is
seen that for a < 0.25that the stationary state 0 < Tico < T300 < Ta0o < 1 is a
disorganised metastable state. For a > 0.25 the stationary state is the organised
state 0 < L1300 < T20o < T300 < 1.

If we write the ODEs for each of the 6 possible configurations of the three
neurons and plot the solution to the equations (solved numerically) then the
left diagram of figure 2 shows resultant trajectories for a = 0.5 projected onto
the x;,z, plane (i.e all the phase plots which follow are projections of three
dimensional trajectories onto the z;,z, plane).
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Figure 1: Solution of the ode for three neuron weights z,, 22,23 plotted against
a.

There are two stable stationary states, one in each of C; and 4. Next non-
organised metastable states are introduced by letting a = 0.15, the right diagram
of figure 2 shows a plot of z, v's z; for the solution of equations (5). There are
6 six stable stationary points one in each of the possible configurations.

Next the KNN was simulated using the parameters described above and
a = 0.5. Starting from a given initial condition the algorithm was run for
several thousand iterations, with the value of each neuron weight recorded at
each iteration. The weights were initialised to the same values and the algo-
rithm run again with a different input sequence (i.e. though still uniformly
distributed). After several such iterations an ensemble average of the trajecto-
ries was obtained. This complete process was carried out for several different
initial conditions. The result is a set of trajectories shown in figure 3.

Comparing this phaseplot with the left diagram of figure 2 it is possible to
see how theory and practise produce a similar phaseplot.

However if the simulations are run for the case of @ = 0.15 and a gain function
a(t) = 300/(t+800) then the phase plot of the left diagram of figure 4 is obtained.
In this phase plot the direction of the heavier trajectories is from r to p from ¢
to p from s to ¢ and v to g. Comparing this to the phase plot predicted by the
ODE in figure 2 there is a distinct difference in that these dark trajectories are
not predicted by the ODEs. The same procedure was tried again but this time
with a different gain function a(t) = 75000/(t + 80000), which is initially larger
and decreases less quickly with time than the previous case. The result is shown
in the right diagram of figure 4. '

The noticeable difference between the two diagrams in this figure is the dif-
ference between the heavier trajectories between the metastable states. In the
former the trajectories are much closer while in the latter they have spread out
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Figure 2: The left diagram shows a solution of the ODEs for a = 0.5, the right
diagram is for a = 0.15. Metastable states are indicated by p, q, 1, s, t, V.

X,

Figure 3: Phase plots of the averages of the neuron weights z;,z2 for a = 0.5.
Metastable states of the ODEs are indicated by p, q.



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 1-8

X, X

Figure 4: The left diagram is the average of the trajectories for a = 0.15,
a(t) = 300/(t + 800). The right diagram for a = 0.5, a(t) = 75000/(80000 + t).
Metastable states are indicated by p, q, 1, s, t, V.

somewhat. They are both however different from the phase plot predicted by
the ODE. So where is the problem, or, is there a problem? Consider the case
x(0) € Cy. It is noticeable from the phase plots determined from simulations
that initially the trajectories go towards the point where the ODEs predict a
metastable state in C; (i.e. state v in figure 2). By running simulations how-
ever it is seen that, sometimes, for large enough ¢ then x(t) € C;. As the gain
function is made initially smaller and decreases more quickly then the longer
the process spends at the disorganised metastable state.and the longer it takes
for x(t) to enter Cy, if it does at all. Of course if the process is started several
times from the same initial condition then it will enter C; at a different ¢ each
time. Therefore when the ensemble average is taken of the trajectories there is
an average taken over x(t) € C; and x(t) € C;. Hence the dark trajectory from
s to ¢ in figure 4, where x(t) is caught between the two stationary points. By
increasing the initial value of the gain function and allowing it to decrease more
slowly then the result is that x(t) can escape from C; to C; (i.e. absorbing)
much sooner. Thus the process which moves between the two stationary points
is closer to the state ¢ and thus the trajectory around s lightens, or the average
trajectory moves closer to g.

Here we see how the ODE method is limited as it is a first order method, that
is it predicts averages of the process. It does not however take into consideration
the second order statistics of the process. How is it possible to apply the ODE
so that this dark trajectory between two metastable states is predicted. Instead
of considering the ODE for each configuration perform the average as in the
simulation and average over all possible configurations that x(t) can be in for
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Figure 5: Left diagram for the solution of the ODEs with 8 = 0.3. The right
diagram is for 8 = 0.9. Metastable states are indicated by p, q, 1, s, t, v.

t > 0. For the case considered with x(t) € C; |JC2 the ODE is then given by,

dx dx! dx?
= = Q=P+ (6)

where 0 < # < 1 is a function dependent on the gain function, % is the ODE

for C;, and 3‘%—2 is the ODE for C;. The resultant ODE is solved and the phase
plot is shown in the left diagram of figure 5 for 8 = 0.3 and in the right diagram
of figure 5 for 8 = 0.9. In these examples the dark trajectory has been shown
between the points r and p etc.

From this simple analysis it would seem that in the general case of the KNN
the ODEs should be written in the form,

dx X oax
@ = Lhw )

where Ef__l B; =1 and % is the ODE for configuration i. The values 3; are
also dependent on the gain function. From this simple analysis we see that a
more accurate global picture of the average behaviour of the neuron weights
is thus obtained by averaging over all the possible neuron configurations. An
analysis of self-organisation in the KNN using the ODE method should now be
possible.

4 Conclusion

Metastable states in a simple KNN have been examined using a set of related
ODEs. In analysing the metastable states it has been found that a satisfactory
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explanation, based on intuition, of the complete process of self-organisation can
only be obtained if the ODEs are formed from an appropriate weighting of the
ODE:s for each configuration. This weighting of the configuration is dependent
on both the value and time derivative of the gain function. Using this set of
global ODEs it should be possible to analyse the self-organising properties of
the KNN.
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