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Abstract. We characterize functions that are in the uniform closures of
sets of functions computable by Gaussian RBF networks with a bounded
number of hidden units. We show how description of such functions can
be applied to comparison of rates of approximation by networks with
perceptrons and with Gaussian RBF units.

1 Introduction

In recent years, approximation of functions between finite dimensional Euclidean
spaces by feedforward neural networks has received wide research interest. Ca-
pabilities of many classes of neural networks to approximate arbitrarily well
continuous or measurable functions were proven. But to approximate within a
specific accuracy some given function, it is not known which type of network can
be least complex in the sense of requiring the fewest number of hidden units.
For example, perceptrons and radial-basis-function (RBF) units are geometri-
cally opposite: perceptrons apply a sigmoidal activation function to a wéighted
sum of inputs plus a bias and so respond to non-localized regions of the input
space by partitioning it with fuzzy hyperplanes (or sharp ones if the sigmoid
is Heaviside’s step-function), while RBF units calculate the distance between
an input vector and a centroid, multiply by a width, and then apply a kernel
function - hence, respond to localized regions. So perceptron type networks and
RBF networks may be efficient in approximating different types of functions.
Suppose for instance that the rates of approximations of functions from a
set S by perceptron networks are related to the rates of approximation by RBF
networks in such way that there exists a mapping r : N' — N (N denotes
the set of natural numbers) such that for every f € S and € > 0 if f can be
approximated within € by a perceptron network with & hidden units, then f
can be also approximated within ¢ by a RBF network with 7(k) hidden units.
If § contains a function computable by a single perceptron, then for every ¢
there exists a RBF network with r(1) hidden units approximating it within €.
In mathematical terms this means that the function computable by a single

* This work was partially supported by GACR grant 201/93/0427 and Warsaw Uni-
versity of Technology Project PATIA 503/901/2.

321



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 321-326

perceptron is in the closure (with respect to the norm in which the error is
measured) of the set of functions computable by RBF networks with r(1) hidden
units. ’

In this paper we characterize functions that are in the uniform closures of sets
of functions computable by Gaussian RBF networks with fixed number of hidden
units. We show that no ridge function, in particular no function computable by
a single perceptron with any activation function, could be contained in these
closures. The opposite question is whether the rates of approximations by RBF
networks are related to the rates of approximations by perceptron networks. We
answered it in [2] by showing that sets of functions computable by networks with
bounded number of Heaviside perceptrons are closed. Qur work was inspired by
Chui et al. [1] who compared approximation capabilities of one and two-hidden-
layer perceptron networks with Heaviside activation function.

The paper is organized as follows. In section 2 we recall basic concepts and
results, in section 3 we present our characterization of closures of spaces of func-
tions computable by Gaussian RBF networks with bounded number of hidden
units, and in section 4 we apply these results to comparison of rates of approx-
imation. A sketch of the proof of our main theorem is given in the Appendix.

2 The universal and the best approximation property

In this paper we consider the problem of approximating continuous functions
by a one-hidden-layer radial-basis-function (RBF) network with a single linear
output unit. Since in any practical application, values of the inputs can vary
only within certain limits, we can suppose that input vectors are within the unit
cube I4, where I = [0, 1] and d is the number of inputs.- For an even-function
% : R — R we denote by Fa(¢) the set of functions computable by networks
with d inputs and any finite number of RBF hidden units with a radial function
+ and Euclidean norm J|.|| on R?, i.e. Fa(¢) is the set of all functions from R?

to R of the form Efﬂ w; (u_x;_'c.u)’ where w;,b; € R, b; > 0 and ¢; € R%. By
Fa(¢, k) we denote the subset of F4(1) containing only functions computable by
networks with at most k hidden units and by F4(¢, k, B) the subset of Fy(¢, k)

containing functions computable by networks with parameters bounded by B,
i.e. satisfying |w;| < B, |bl—’| < B. The standard choice of a radial function is

Gaussian that we denote by 7, i.e. y(z) = e .

Capabilities of networks to approximate functions are studied mathemati-
cally in terms of closures and dense subspaces; see, e.g. [7] for the basic defini-
tions and theorems. By ¢l(X) we denote the closure of a subset X in the space
C(I%) of all continuous functions on I¢ with the topology of uniform convergence
(i.e. topology induced by the supremum norm). So, cl(X) = {f : I 4 R; (Ve >
0)(3g € X)(sup{|f(x) — 9(x);x € I} < €)}.

For any continuous function v with finite non-zero integral, the sets F4(t)
are known to be dense in C(I%), i.e. cl(Fa(¥)) = C(I¢) ( [5], [6], [3]). In neural
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networks terminology this capability is called the universel approzimation prop-
erty. However, one may require an arbitrarily large number of hidden units as
well as size of their parameters as the accuracy of the approximation increases.

In practical situations, the number of hidden units is bounded by some fixed
positive integer. In addition, the parameters are also bounded. Under these con-
ditions, we showed in [2] that for many types of feedforward networks including
RBF, given any continuous function, there is a choice of network parameteri-
zation (not necessarily unique) producing an approximation with the minimum
error. We call this the best approzimation property. In fact we showed that such
spaces are compact, which in particular implies that F4(%, k, B) is closed for any
bounded % and thus no function that is not already contained in F4(, k, B) can
be approximated with any accuracy by RBF networks with bounds on both the
size of parameters and the number of hidden units. A major question which is
not yet fully understood is how quickly such best approximation error decreases
with the growth of the number of hidden units.

3 Closures of spaces of functions computable by Gaussian
RBF networks with bounded number of hidden units

In contrast to Fs(¢, k, B), the sets Fq(¢, k) containing functions computable
by RBF networks with only the number of hidden units being constrained need
not be closed as subspaces of C(I%). For example, the function —2z?y(z) can
be approximated with any accuracy by a Gaussian RBF network with only two

hiden units. Indeed,
I —hm nﬂ r—c . r—c
b=1,c=0 T nSoo U b+ % 7 b )

We will show that for no other functions than linear combinations of partial

“2sty(a) = —a(z) = T

derivatives of « (M) with respect to ¢1,...,¢4 and b does there exists a

bound on the number of hidden units needed for an arbitrarily close approxi-
mation. Denote by @4(7, k) the set of all functions of the form

m m; akj-y (li_‘.’.z_ll) d 6"17 (H___c.v.ll)
Do 2 (wio——m +E”ul +a,
. A ab;"™i dcjiks
i=1 \j=1
where Ez_lz domikj <kandavj; €R,i=1,....m j=1,...m =
0,...,
The followmg characterization of ¢l(F4(7,k)) is based on the properties of

total differential and a proof technique that we developed in our previous paper
[4] to verify essential uniqueness of a Gaussian RBF network parameterization.

Theorem 3.1 For all positive integers d, k and for every f € cl(Fi(v, k)) there
ezist h € Fi(vy,k), and ¢ € D4(7, k) such that f = h + ¢.
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The following lemma is easy to verify by induction.

Lemma 3.2 For every positive integer k there ezist polynomials px,qx : R? —

oty (‘"—»—“) = eallx=cll) (ux cn)

R such that for every positive integer d

a* 1IxX-c
and for everyl=1,...,d 7(3,_.1: ) - q"(x;,, 2.b) (IlX-b-c][)'

Theorem 3.1 together with Lemma 3.2 imply the following characterization
of cl(Fa(v, k)).

Corollary 3.3 There ezist polynomials p, gy : R?2 - R, n €N, such that for
every positive integers d, k every f € cl(F4(v,k)) can be represented as

m m; d
lIx — <l S [ wiipe, (1% — el b:) vijig, (T — c1, bi)
5 (Bl (e §5 (il ellt) 5 wimle et ),
]:

i=1 =1 i

where m,mi, kj EN (i=1,....m, j= .y M) satzsfyzi 12 2 mik; <
kanda,w,-,v,-jz,u;jE’R,(z'zl,...,m,j:l m,,l—l )

4 Comparison of rates of approximation

Characterization of closures of spaces of functions computable by networks with
a bounded number of hidden units might be useful for comparison of rates of
approximation of functions by networks with different types of units. Let 7 and
G be sets of functions computable by two different types of feedforward net-
works. By F(k) and G(k) denote subsets of F and G, resp., containing functions
computable by networks with at most k hidden units. We say that the rate of
approzimation of functions from a set S by F is related to the rate of approz-
imation of functions from S by G if there exists a mapping r : N' — N such
that for every f € 8 and € > 0 if f can be approximated uniformly on I¢ within
¢ by a function from F(k), then it can be uniformly approximated within ¢ by
a function from G(r(k)). If S is large enought to contain a function from F(1),
i.e. a function f computable a single-hidden-unit network of the first type, then
there exists k (k = r(1)) such that f € cl(G(k)).

Suppose that S contains a function computable by a single perceptron net-
work with an activation function 1, i.e. & contains a function of the form
¥(v - x + b). This function is constant on every hyperplane parallel with the
cozero hyperplane of the affine function v - x + b. It follows from Corollary 3.3
that for any natural number k this function cannot be contained in ¢l(Fa(v, k))
since functions described in 3.3 are not constant on such hyperplanes. So the rate
of approximation of functions from § by one-hidden-layer networks with per-
ceptrons with activation function ¢ is not related to the rate of approximation
of functions from & by RBF networks with Gaussian radial function. In other

324



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 321-326

words, we cannot approximate arbitrarily well a function computable by a sin-
gle perceptron network by RBF networks using only finitely many hidden units
even if the weights could be arbitrarily large. This result can be extended to sets
S containing a function computable by a perceptron network, i.e. a function of
the form .-, wip(v - x +b).

5 Appendix

Unless specified otherwise all limits involving functions are pointwise.

Sketch of proof of Theorem 3.1

Let f € cl(Fa(y,k)). Then there exists a sequence {f,,n € N} C Fa(v, k) such
that f = lim, .o fn. Since we can choose from every sequence of real numbers
either a converging or a diverging one we can assume that for every n € N

fa@) = Yoim, winy (M), where m < k and all the sequences {w;n;n €
N}, {bin;n € N}, {llcinll;n € N} and {H%T"u;n € N'} are either converging or

diverging. In the case of convergence put w; = lim,_, 0 Win, b; = limyo0 bin
and ¢; = lim,_, i ||cin|], otherwise put w; = 0o or w; = —oo and b; = 400 and
¢; = +oo. Denote by Juie, Joey Jwes Juwb, Jw, Jb, Je, J the subsets of the set
{1,...,k} such that the indexes w,b, ¢, resp., indicate that ¢ is in J with such
an index, if the sequence {win;n € N}, {bin;n € N}, {cin;n € N}, resp., is
converging. Since v is continuous and bounded h;(x) = 5. w;® (]E{;_‘c._u) =

iEJwbc
limpaoo Y, WinY (IL’E'I;—C'—"U) uniformly. Since v is a.symptotically zero, there
1€Jwbe .
exists ap € R such that ap = hmn_wo E'E-’chJwaJw WinY (H%ll) So,

f(x)— h1(x) — ao = limpc0 Y e 2, 000707 WinY (be—:‘lu) . Let H be such a

subset of Jy,UJyUJ.UJ that all the pairs {(b;, ¢;); i € H} are mutually different
and for every j € JpcUJy U J U J there exists i € H such that (b;, c;) = (b;, c;).
For each ¢ € H put K; = {j € Joc U Jy U J. U J;(bj,c;) = (bi,ci)} and
for each n € N put w;, = z iek; Win- Put Lye = HN Jpe, Ly = HNJ,
L.=HnNnJ.and L = HﬂJForeacthLbcandJEKandneN

put ¢jn(x) = v ("x—cﬂ"-) e (H-x—c‘-u) For every i € Ly UL, U L and
for every n € N put a; = limpoy (H?_‘;;%Jl) Then f(x) — hi(X) —ap =
limy, o0 (zzeLbc (w,,,7 (M) +2jexk, wjn¢jn(x)) +2ieLuL,uL w;,,a,-) :
Put P = {i € Lic; {thin;n € N} is converging} and Q = {i € Ly.; {ibin;n €
N} is diverging}. Put ha(x) = Y ;cp Wiy (]jx_f:,u) and h = hy + hy. Put

Vp = max{lwm|,z € Lsc}. Let M be an infinite subset of N such that there
exists 19 € L. such that for every n € M v, = |;,n|- Put v;, = Zin and v; =
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hmna.; Vin. Then liMr—oo DE)-hX)-a . llmn—w (EzEQ VnivY (M) +

neM Un

Y ieLu ZJEK. o = din(x) + EIELbUL UL ;,,a‘)‘ So,

Sur (B o (5 8 e S 2

i€Q ne€M \i€Ly. jEK; i€L,UL,UL

(1)

It follows from the propertles of total differential that either the limit on

the right side of (1) is not a finite function or there exists 4 € R and u; =
(4j0,- .., uja) € R4+ such that the limit is equal to

Bkivy (Hx_c_ll) A Gia (LPE__C_H)

Z Z Ujo ab k: +Zuﬂ aC;I + u,

i€Lyc JEK
where Y cp, D ick, < m, where K; = {j € Ki;u;j # 0}. So, by Lemma 3.2
X-Cill\’ ujopk,; (JIX—Cil,0:) d  uigk (zi—e,bi)
ZzEQ7 (ll_ll) (”i + ZjeK.- ( PEL + Ez=1 - % )) =u.
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Since all the pairs (b;, ¢;) are mutually different, an argumel;lt similar to the
one we used in [4] in the proof of Theorem 2.3, based on Schwartz’s inequality
and asymptotic properties of exp(z), shows that this can only happen when ei-
ther all v; = 0 or Q = 0. Since there exists i such that for every n € M |vjon| =

1, we have Q@ = 0. Putting ¢(x) = ao + limn-az (EieP Yiek: Win®in(x) +

Y ieLyUL.UL Wina;), we get f = h+ ¢. It follows from properties of total differ-
ential that é € D4(7, k)
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