ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 241-246

Constructing Feed-Forward Neural Networks
for Binary Classification Tasks

C. Campbelltand C. Perez Vicente}
tAdvanced Computing Research Centre, Bristol University, Bristol
BS8 1TR, United Kingdom
1Dept. de Fisica Fonamental, Universitat de Barcelona, Diagonal
647, 08028 Barcelona, Spain

Abstract. We propose an efficient procedure for comstructing and
training feed-forward neural networks. The procedure can be used to
generate neural networks with either a single hidden layer, a cascade
or a tree-structured architecture capable of performing arbitrary binary
classification tasks. The procedure can also be extended to comstruct
neural networks with binary-valued weights.

1. Introduction

In this paper we will outline a new constructive procedure for generating feed-
forward neural networks with either a single hidden layer, a cascade architec-
ture or a tree-structured network. The networks generated have an economical
structure and generalise well. In addition the procedure can be readily adapted
to generate networks with binary-valued weights: neural networks with binary
weights are straightforward to implement in hardware and exhibit good gener-
alisation due to the reduction in the number of free parameters in the network.

Let us consider a-neural network with N input nodes labeled by index j
and one output node. Suppose we wish to map inputs E;‘ onto a set of targets
n*, where u is the pattern index and 7* has components 1. Weights leading
from input j to a hidden node i will be denoted W;;. If we use a +1 updating
function for the hidden nodes then an input vector S; will give an internal
representation S; = sign(zj W;;S; — T;) where T; is the threshold at hidden
node i. We will define the sign-function as having an output of +1 if its
argument is greater than or equal to zero and —1 otherwise.

For binary classification tasks the patterns belong to two sets: patterns with
target n* = 1 (the set P*) and those with target * = —1 (the set P~). For
binary inputs (quantised %1) it is always possible to find a set of weights and
thresholds which will correctly store all the patterns belonging to one of these
sets and at least one member belonging to the other set [1] (we will comment
on the case of analogue input data in section 4). For example, suppose pattern
p# = 1 has target +1. If we use weights W;; = 5} and a threshold T; = N then

S; = sign(zj W;;S; — T;) gives an output S; = +1 if S; is equal to 5} and

241



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 241-246

—1 otherwise. Usually it is possible to do better than this and store a number
of members of Pt in addition to all the P~ . A set of weights and thresholds
which correctly store all the P* patterns and some of the P~ will be said to
induce a @-dichotomy while a ©-dichotomy will correspond to correct storage
of all the P~ patterns and some of the P*. In section 2.3 we will describe a
heuristic procedure for finding these & and 6 -dichotomies.

Let us consider a pair of nodes in a hidden layer with direct connections
to the output node (each with weight-value +1). Let us assume the first of
these nodes induces a @-dichotomy and the second induces a &-dichotomy. If
the first node correctly stored a pattern belonging to P~ then the second node
must similarly store this pattern correctly and both nodes contribute —1’s to
the output node. If the pattern belonging to P~ was not stored correctly then
the first node will contribute a +1 to the output which is cancelled out by the
—1 from the second node. Similarly if the second node successfully stores a
pattern with target +1 then both nodes will contribute +1 to the output node
otherwise the contributions from the two nodes cancel each other out. If the
threshold at the output node is zero, patterns contributing two +1’s or two —1’s
will give the correct output. To handle those patterns which contribute zero
to the output it is necessary to grow further hidden nodes. In growing further
hidden nodes we must avoid disrupting patterns correctly stored by previous
hidden nodes. This leads to two strategies. In the first (section 2.1) we grow
a single-hidden layer. With each @-dichotomy we must store the original Pt
pattern set and those members of P~ not stored at previous @-dichotomies
(and vice versa for ©-dichotomies). The second approach (section 2.2) involves
alternating dichotomies in the hidden layer and we only store those patterns
not stored correctly at previous pairs of dichotomies. Since learnt patterns
(i.e. two +1’s or two —1’s) are discarded from the training set of succeeding
dichotomies we avoid disrupting previously learnt patterns by introducing a
cascade structure of linear nodes or a tree of thresholding nodes between the
hidden layer and output.

2. The Algorithms

2.1. Neural networks with a single-hidden layer. To generate a feed-
forward neural network with a single hidden layer we proceed as follows. Let
Pt and P be the pattern sets at hidden node i then:

1. Perform a @-dichotomy with the current training set (see 2.3 below). For
hidden node i the training set P;* is equal to the original P* whereas P;” only
consists of members of P~ previously unstored at earlier hidden nodes inducing
a @-dichotomy. We repeatedly grow hidden nodes, iterating this step until all
patterns belonging to P~ are stored.

2. Similarly we construct a set of hidden nodes inducing ©-dichotomies. For
hidden node i the training set P;” is equal to the original P~ whereas Pt only
consists of members of PT previously unstored at earlier hidden nodes inducing

a ©-dichotomy. We repeatedly grow hidden nodes and iterate this step until

242



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 241-246

all patterns belonging to P* are stored.

3. We use a threshold at the output node equal to the difference between
the number of hidden nodes inducing @-dichotomies and the number inducing
©&-dichotomies.

2.2. Cascade Architectures and Tree-Structured Networks. An al-
ternative strategy is to grow pairs of hidden nodes with alternating & and
©-dichotomies. Patterns learnt by a pair of hidden nodes (two +1’s or two
—1’s) are discarded from the training set of succeeding pairs of hidden nodes.
We can avoid disrupting previously stored patterns by introducing a cascade
structure of linear nodes between the hidden layer and output node. This archi-
tecture is illustrated in Fig. 1 (a link between two nodes indicates a connection
with a corresponding weight value always fixed at +1; the numbers indicate
the order in which hidden nodes are grown). If the first two hidden nodes
output (4+1,+1) or (—1,—1) then the first linear node feeds a +2 or —2 to the
output and succeeding linear nodes, thereby inhibiting the latter from sending
erroneous contributions to the output node. If these nodes output (+1,—1)
or (—1,+1) then the first linear node outputs 0 and consequently the output
of the network is influenced solely by the remaining hidden nodes. Instead of
this cascade structure we can also use the tree structure of threshold nodes
illustrated in Fig. 2 (the numbers indicate the order in which hidden nodes are
grown in the initial hidden layer). The number of hidden nodes can be odd
for both architectures. We can now describe the main steps in the algorithm.
Starting from the original training sets P+ and P~

1. At hidden nodes ¢ and 7 + 1 we perform @ and ©-dichotomies respectively.
2. If the previous pair of hidden nodes failed to store some of the pattern set
then we create training sets P:-':_l, P Pi‘_"+2 and P, for a further two hidden
nodes inducing a @ and &-dichotomy respectively. These training sets consist
of patterns previously unstored at earlier pairs of hidden nodes. Steps 1 and 2
are iterated until we obtain a separation (this can occur at an odd-numbered
node).

3. Finally we grow the cascade or tree architectures shown in Figures 1 and 2.

ﬂg?::‘ (P Output

3 @\
‘\-V

3@ \O,_

2 @\\\\O

2 @—/” ?

=

FiG.1 CASCADE ARCHITECTURE FIG.2 TREE ARCHITECTURE

243



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 241-246

2.3. The Dichotomy Procedure. To implement these algorithms we need
an efficient procedure for obtaining the dichotomies at each hidden node. To
obtain a @-dichotomy we use the following procedure:

(1) We use an algorithm to find a set weights W;; between the input nodes j
and hidden node i. If the pattern set is not linearly seaparable the algorithm
attempts to find the best linearly separable subset storing most patterns. We
will discuss this step in more detail below.

(2) Using these weights we now calculate m} = 37, W;;€} for all the patterns

belonging to P and P;”. Among those patterns belonging to the set P, we
find the pattern with the largest value of m{'. Suppose this is pattern g = A
then we set the threshold at i equal to m? i.e. T; = m.

(3) For the set of patterns belonging to P;* we then find if there are any
patterns such that m# is less than or equal to m* i.e. m{' < m. If there are
no patterns in Pi'" with m!' less than or equal to m} then we have finished
training the weights and thresholds leading into hidden node 7 and we proceed
to step (5) below. However, if there are patterns in P,-+ satisfying this inequality
then we find that pattern in P;¥ which has the smallest value of m#. Let us
suppose this is pattern gy =v.

(4) Among those vectors belonging to P, with m} > m! we find the pattern
with the largest value of m# and assign it the value +1 (i.e. this pattern moves
from P to P;t). With the new sets P and P, we return to step (1) to find
a new set of weights and thresholds.

(5) We have now obtained a @®-dichotomy. For the remaining members of

P the sums Zj W,-,{J’.‘ are less than the threshold 7T; whereas for patterns

belonging to P,-+ these sums are greater than T;. However, this dichotomy may
not be the best solution and consequently we can proceed with further training
to maximise the number of patterns in P~ -which are stored correctly. To do
this we record the number of P;” patterns which were correctly stored (and
associated weights and thresholds). We then discard these correctly stored P;~
patterns and use the unstored P;” and the original P as our training set,
repeating steps (1)-(4). Eventually we will exhaust the entire P;” set and we
choose the solution which stored the largest number of P;” patterns as the set

13
of weights and threshold for this hidden node. Step (5) substantially reduces
the number of hidden nodes generated by the algorithm described in section
2.2 though it is less useful for the single-hidden layer algorithm in section 2.1
(at least for the problems we investigated).

To obtain a ©-dichotomy we follow a very similar procedure. In step (2)
we find the pattern with the smallest value of m{ (for 4 € P;t) and set the
threshold T} equal to this value of m#. If the pattern sets are not linearly sep-
arable we search through the P;* to find the pattern which is least well stored,
switch its target-value +1 — —1 and iterate the sequence until a separation of
the two sets is achieved.

Some patterns can lie in the hyperplanes found in the @ and 6-dichotomies
(for example in step (2) the pattern g = X lies in the hyperplane). Since we
use the convention sign(0) = +1 it is necessary to offset the thresholds in step

244



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 241-246

(2) of the ®-dichotomy by a positive quantity 7; — T; + . For binary inputs
quantised 1 and binary weights we can set § = 1. However, for analogue
inputs or real weights é should be a very small quantity.

So far the dichotomy procedure is general and a number of different learning
rules can be used in step (1). In the simulations below we used the Minover
algorithm [2]. Minover is a perceptron-like rule and in the simulations we used
a “pocket” version to find the best solution storing most patterns. For the
binary-weight solutions mentioned below we clipped the weights to 1.

3. Simulations

In this section we will compare generalisation performance for both real and
binary weights in addition to making a comparison with other algorithms.
We will consider two Boolean problems, the Mirror Symmetry problem and
Shift Detection, and illustrate the improvement in generalisation performance
achieved with binary-valued weights. We will then briefly outline an extension
of the algorithm proposed in section 2.2 to handle analogue input data.

3.1 Mirror Symmetry Problem. For the Mirror Symmetry problem the
output of the network is 1 if the input bit string is exactly symmetrical about
its centre, otherwise the output is —1. To investigate generalisation ability we
generated 100 training patterns such that the first half of the input bit string
was randomly constructed from 41 with both components selected with a 50%
probability. We define the generalisation rate as performance on a test set
(of 1000 patterns) drawn randomly from the same pattern distibution as the
training set (but excluding training patterns). For randomly constructed inputs
the output will be —1 with a high probability. Consequently we randomly chose
the two target values with 50% probability and determined the symmetry of
the input strings accordingly. For the algorithm generating a single hidden
layer (section 2.1) the generalisation rate was 67.3 + 3.8% for real weights and
77.3+5.0% for binary weights using the same pattern set (the average number
of hidden nodes generated was 16.8 and 32.0 respectively and we used a sample
of 200 networks). For the Cascade and Tree-Structured networks (section 2.2)
generalisation was 68.4 + 3.2% for real weights and 80.4 4 4.8% for binary
weights (the average number of nodes in the initial hidden layer being 5.2 and
13.2 respectively). Thus, for this problem, generalisation is better for binary
weights rather than real weights and the Cascade and Tree-Structured networks
generalise better than the single-hidden layer network.

3.2 Shift Detection Problem. In the Shift Detection problem we consider
a network with 20 input nodes and one output node. The first 10 input nodes
are a randomly constructed pattern with components 1 and the second set
of 10 input nodes is given the same pattern set circularly shifted by one bit
to the left (target=+1) or right (target=—1). In our simulations we trained
the network with 100 patterns and tested generalisation performance on 1000
examples drawn from the remaining patterns (samples of 200 networks were
used). For the algorithm generating a single hidden layer generalisation was

245



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 241-246

88.9 £ 3.7% for real weights and 95.4 & 2.3% for binary weights (the average
number of hidden nodes being 12.6 and 19.2 respectively). For the Cascade
and Tree-Structured networks generalisation was 86.6 + 4.6% and 91.4 £+ 3.4%
respectively (with average number of nodes 7.3 and 15.8). For this problem a
single hidden layer architecture appears best.

For comparison with other algorithms we may quote results from Nowlan
and Hinton [3] who have also used the Shift Detection problem to study the
performance of a neural network with soft-weight sharing. They used an iden-
tical 20-node input network with 10 hidden nodes. 100 training patterns were
used in addition to a validation set of 1000 examples (the test set was drawn
from the remaining examples). For standard Backpropagation the generalisa-
tion rate was 67.3£5.7% while for Cross-Validation generalisation improved to
83.5+5.1%. For soft-weight sharing generalisation was 95.6 +2.7% (5 compo-
nents) and 97.1 + 2.1% (10 components). Though the latter statistics appear
marginally better our algorithms have the advantages of generating the ar-
chitecture and guarranteed convergence (gradient descent methods have the
disadvantage that spurious local minima proliferate in the presense of weight-
sharing). Also we did not use the validation set of 1000 examples during train-
ing.

4. Discussion

In the above discussion and simulations we have used binary input data quan-
tised 1. Convergence was guarranteed because it is always possible to enforce
a minimal solution storing all the patterns of one target-sign and one pattern
of the opposite target sign: geometrically this is equivalent to isolating one
target value on the surface of a hypersphere using a tangential hyperplane.
For analogue input data the pattern vectors are of arbitrary length so this
construction is not always possible. However, for analogue input data it is
possible to guarrantee-convergence for the algorithm in section 2.3 by noting
that a pattern distribution may exclude both a @ and &-dichotomy but either
a @ or ©-dichotomy is always possible (because there is a pattern vector or
subset of vectors of maximal length). This extension has performed well on
analogue data [4] (for example, for the aspect-angle independent sonar classi-
fication dataset of Gorman and Sejnowski [5] generalisation performance was
85.0+7.2% exceeding their results for Back-Propagation). Finally we note that
storing noisy data can lead to overfitting consequently it is also advisable to
use a pruning procedure after constructing the network: appropriate prunning
strategies are outlined elsewhere [4].

[1] M. Marchand, M. Golea and P. Rujan, Europhysics Letters 11(1990)487-492.
[2] W. Krauth and M. Mezard, J. Phys. A20(1987)L745-L752.

[3] S. J. Nowlan and G.E. Hinton, Neural Computation 4(1992)473-493.

[4] C. Campbell and C. Perez Vicente, preprint submitted to Neural Computa-
tion.

[5] R.P. Gorman and T.J. Sejnowski, Neural Networks 1(1988)75-89.

246





