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Abstract. We study the fundamental question of how query learn-
ing performs in imperfectly learnable problems, where the student can
only learn to approximate the teacher. Considering as a prototypical sce-
nario a linear perceptron student learning a general nonlinear perceptron
teacher, we find that queries for minimum entropy in student space (i.e.,
maximum information gain) lead to the same improvement in generaliza-
tion performance as for a noisy linear teacher. Qualitatively, the efficacy
of query learning is thus determined by the structure of the student space
alone; we speculate that this result holds more generally for minimum
student space entropy queries in imperfectly learnable problems.

1. Introduction

The linear perceptron is arguably the simplest system that can learn from
examples. It has recently been the subject of intensive investigation within the
neural networks community (see, e.g.,-[1, 2, 3,-4]).~Traditionally; learning was
assumed to be from a training set composed of random ezamples, with inputs
chosen randomly and independently from some fixed distribution, and outputs
provided by an unknown teacher, possibly corrupted by some noise. The aim
is to generate, by a suitable training algorithm, a student linear perceptron
which predicts as accurately as possible the outputs corresponding to inputs
not contained in the training set, i.e., which generalizes from the training data.

Since random training examples contribute less and less new information
as the size of the training set grows, it is worthwhile investigating what im-
provements in generalization performance can be achieved by learning from
queries, i.e., by choosing each new training input such that it is, together
with its corresponding output, most ‘useful’ in some specified sense. The most
widely used measure of usefulness is the decrease of entropy, or gain of informa-
tion, in the parameter space of the student (see, e.g., [5]). The corresponding
‘minimum entropy queries’ have recently been studied for a perfectly learnable
problem [6], where the teacher, like the student, is a linear perceptron. How-
ever, since in real-world problems the functional form of the teacher is almost
never known, it is of fundamental importance to investigate the performance
of query learning in imperfectly learnable problems, where the student can only
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learn to approximate the teacher. This we do in the present paper by consider-
ing as a prototypical imperfectly learnable scenario a linear perceptron student
learning to approximate a teacher perceptron with a general nonlinear output
function. We focus on the effect of the teacher nonlinearity on the efficacy of
query learning, i.e., the ability of queries to reduce the generalization error
when compared to training on random examples.

In Section 2., we set up a formal model of the learning scenario considered.
The main result of the paper for the average generalization error is presented
and interpreted in Section 3.; the corresponding result for the training error is
also given. We conclude with a summary and discussion of our results.

2. The learning scenario

We denote students by N (for ‘Neural network’) and teachers by V. A student
N is specified by an N-dimensional weight vector w, € RN and calculates its
output y, for an input vector x € RN according to

— 1 T
Yv = FRX Wu-

Teachers are similarly parametrized in terms of a weight vector w, € R,
but calculate their output y, by passing the (scaled) scalar product of x with
this weight vector through a general nonlinear output function. Allowing the
teacher outputs to be corrupted by noise, we only specify the average output
for a given input

(W)payixy) =7 (Vlﬁxva) (1)

where g(-) is a ‘noise-averaged’ output function. Concerning the noise process
corrupting the teacher outputs, we make the mild assumption that the variance
of the fluctuations Ay, of the teacher outputs y, around their average values (1)
can be written as a function A%(-) of -\71Nxva alone:

(Aw))pyixy) = A2(71ﬁ"TWv) ‘

This condition is fulfilled, for example, for additive noise with finite variance on
the outputs or when the components of the teacher weight vector are corrupted
by additive Gaussian noise with identical variance for each of the components.

We assume that the inputs are drawn from a uniform spherical distribu-
tion, P(x) o §(x> — No2). Using as our error measure the standard squared
output deviation, %(y,., — y»)?, we obtain for the generalization error, i.e., the
average error that a student N makes on an random test input when trying to
approximate teacher V,

G V) = 3 [Quo? -2 (3 + G| + 30 @)

where
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Here (-)5 denotes an average over a Gaussian random variable h with zero mean
and variance @02, and we have assumed the ‘thermodynamic limit’, N — oo,
of a perceptron with a very large number of input components.

As our training algorithm we take stochastic gradient descent on the train-
ing error, given by E; = %E LY = ya(x#))? for a training set consisting of
p input-output pairs {(x*,y*), = 1...p}. To prevent the student from over-
fitting noise in the data, we add a quadratic penalty term parametrized by a
‘weight decay’ parameter, ), thus replacing E; by E = E¢+ 3Ao2w2.. Stochas-
tic gradient descent on E leads to a Gibbs distribution of students, P(wy)
exp(—E/T), where the ‘learning temperature’ T" measures the amount of sto-
chasticity in the training algorithm (see, e.g., [1]). To have a well defined
thermodynamic limit, we assume, as usual, that the number of training ex-
amples is proportional to the size of the perceptron, i.e., p = aN. We will
concentrate our analysis on the average of the generalization error (2) over the
post-training distribution of students, over all training sets produced by a given
teacher V, and over the prior distribution of teachers, which we assume to be
Gaussian, P(V) o exp(—3w2/02).

For training on random examples, each input in the training set is drawn
randomly and independently from the assumed uniform spherical input distri-
bution. By contrast, for minimum entropy queries each new training input is
chosen such that the entropy of the post-training distribution of students is
minimized. For Gibbs learning, this entropy is given by (up to an irrelevant
additive constant which depends on the learning temperature T only) [6]

Sx = —1Indet M, MN=/\0'3,1+%Z“X”(X“)T

where 1 denotes the N x N identity matrix. The independence of the entropy
of the training outputs y#, and hence of the teacher output function g(-), is
characteristic of linear students. The entropy Sy is minimized by choosing each
new training input along an eigendirection of the existing M, with minimal
eigenvalue [6]. If we apply such minimum entropy queries in sequence, we find
that the first N training inputs are pairwise orthogonal but otherwise random
(on the sphere x* = Ng2), followed by another block of N such examples,
and so on. It follows that the overlap #(x*)Tx” of two different inputs for
minimum entropy queries is smaller or equal to that for typical random inputs,
which is O(1/v/N). This simplifies the calculation by enabling us to expand
averages like (§(wlx*/v/N)g(wTx*/v/N)) p(v) in powers of 1/ VN, retaining,
in the thermodynamic limit, only the lowest order terms.

3. Results

Following the calculation in [3] and using the techniques outlined in the previous
section, we obtain as the main result of the paper the following expression for
the average generalization error (primes denote derivatives):

1
g = 573ﬂ"" 202 [AoptG(A) + A(Aops — A)G'(A)] + €g,min- (3)
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Here we have introduced the constants (h is again a zero mean Gaussian vari-
able, now with variance o202)

Yett = (hg(h))n/(0302) =(3' (R))n
= (A2(h))n dopt = 025/ (Vg0l0l) (4)
0lg = 03+ (@MW) — (hG(R)3/(0302)]  €gmin= 3024

2
The function G is the average of 3¥tr M} over the training inputs and is given

by

G(\) = (1 —a- A+ /I-a- N7+ D) (5)

for random examples [3], whereas for minimum entropy queries its value is [6]
Aa 1-Aca

G(A) = 6

O vl vy ©)

where [a] is the greatest integer less than or equal to @ and Aa = a — [a]. In
eq. (3) we have restricted ourselves to the case of zero learning temperature
T, as finite T gives only an additional positive definite contribution $TG(})
to the average generalization error. For finite a, €z is minimized when the
weight decay parameter A is set to its optimal value, Aqp; as a — oo, the
generalization error tends to its minimum achievable value, €g min, Which is
independent of A.

We now explain the remaining constants introduced in eqs (4) The aver-

ages over h correspond to averages over the scalar product Wx Tw,,. Therefore

02, is the average variance of the teacher outputs, i.e., the actual noise level.
In order to clarify the meanings of 7. -and o2, consider the special case of a
linear teacher with ‘gain constant’ v, given by g(h) = vh, and let the teacher
outputs be corrupted by zero mean additive noise. It then follows that yeq = 7
and 02; = 0%;. The optimal weight decay Aops = 02, /726202 is the inverse
of the mean-square signal-to-noise ratio of the teacher [6], and the minimum
generalization error becomes €z min = 1072, which is simply the contribution
from the noise on the teacher output. For a general nonlinear teacher and
noise model, eqs. (4) can hence be interpreted as definitions of an appropriate
effective gain constant and noise level, from which Agpt and €gmin are calcu-
lated just like for a linear teacher with additive output noise. For nonlinear
(-), the (strictly positive) difference between o2; and o2, represents effective
noise arising from the fact that the linear student cannot reproduce the teacher
perfectly. Due to this ‘unlearnability’ noise, the effective noise level o2; and
the optimal weight decay Aop can be arbitrarily large even if there is no actual
noise on the teacher outputs.

We have seen that the average generalization error obtained by learning to
approximate a nonlinear teacher with a linear student is exactly the same as
for an ‘effective’ noisy linear teacher. As a consequence, the efficacy of query
learning is also the same as for a noisy linear teacher. Specifically, if we define
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Figure 1: Relative improvement & in generalization error due to minimum
entropy queries, for (a) optimal weight decay, A = Agpe, and (b) A = Aope/10.

the relative improvement in generalization performance due to querying, x, as

€g(random examples) — €g min

k(a) = ;
(@) €g(queries) — €g min

then the result depends only on A and Agp¢, in the same way as for a noisy
linear teacher. Figure 1 shows plots of £(«) for some representative values of A
and Agpt. For large a, & has the asymptotic expansion & = 1+ 1/a+ O(1/a?),
which means that for @ — oo, random examples and queries yield the same
generalization performance. This can be interpreted in the sense that for large
a, learning is essentially hampered by (effective) noise in the data, for which
queries are not much more effective than random examples (¢f. the discussion
in [6]). For finite a, the behaviour of k depends on A and Agpe. For optimal
weight decay A = Agpe (Fig. 1a), ¥ has a maximum at @ = 1 whose height
diverges as 1//Aopt for Aopy — 0; for A > Agpt, the results are qualitatively
similar. For A < Agpe (Fig. 1b), values of kK < 1 can occur which means that
queries do worse than random examples. This case is particularly relevant for
nonlinear teachers where Aqp¢ can be very large even if there is no actual noise
on the teacher outputs. Nevertheless, the asymptotic expansion given above
remains valid, and hence & necessarily increases above one for large enough «.

We now briefly consider the training error in order to check whether it
is affected by the teacher nonlinearity in the same way as the generalization
error. To remove the trivial scaling with the number of training examples of
the training error E; introduced above, we consider the quantity ¢, = E/p.
Performing an average over students, training sets and teachers as before, and
again restricting attention to the limit 7' — 0, we find

/\2

€ = €gmin [1 - é t o (6 +0r- Aopt)G'(,\))} . )
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The function G() is again given by egs. (5,6) for random training examples
and minimum entropy queries, respectively. We observe that the teacher non-
linearity only enters eq. (7) through €gmin and Aopt, and hence affects the
training error in exactly the same way as the generalization error. Note that
for @ — oo, €; tends to €g min, as does the average generalization error ¢g. For
random training examples, this is necessarily the case as the training error be-
comes an unbiased estimate of the generalization error for an infinite number
of training examples. The fact that the result also holds for minimum entropy
queries shows that they ‘cover’ the input space as well as random examples in
the limit &« — oo; for queries chosen to optimize an objective function other
than the student space entropy, this is not necessarily the case (cf. the discus-
sion in [7]).

4. Summary and discussion

We have studied the performance of query learning in a prototypical imperfectly
learnable scenario: a linear perceptron student learning a general nonlinear per-
ceptron teacher. Qur results show that for both the average generalization and
training error, the effect of minimum entropy queries is the same for a nonlinear
teacher as for a noisy linear teacher, with the noise level of this ‘effective’ linear
teacher being the sum of the true noise level and an additional contribution
arising from the fact that the problem is not perfectly learnable. Qualitatively,
the improvement in generalization performance that can be obtained by query
learning when compared to random examples is thus independent of whether
the teacher rule that one is trying to learn is nonlinear or linear. We specu-
late that, in general, the qualitative effect of minimum student space entropy
queries is determined by the structure of the student space and is essentially
independent of the teacher space, i.e., the class of rules that one is trying to
approximate (see also [7]).
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