- ESANN'1996 proceedings - European Symposium-on Artificial Neural Networks
- Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 19-24

Regulated Activation Weights Neural Network
(RAWN)

H.A.B. te Braake"), H.J.L. van Can?, G. van Straten®, H.B. Verbruggen
Control Laboratory, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

Abstract: This paper considers the training of a feedforward neural network with one hidden layer.
The proposed method splits the iraining problem into two separate parameter estimation problems.
Each subproblem can be solved with standard least squares techniques. The training therefore is
very fast compared to iterative training schemes. An examples is presented to show some of the
properties or particularities of this algorithm.

1 Introduction

Feedforward Neural Networks with a single hidden layer of neurons and a linear output
layer are a convenient way to model a nonlinear input-output mapping. Commonly these
networks are trained’ with backpropagation. Despite many improvements which were
developed recently, such as acceleration, adaptive learning rate, momentum, special ini-
tialization, backpropagation is slow and has poor convergence properties. Several papers
have addressed the training of static feedforward neural nets as a parameter estimation
problem ({4]), ({3]). Also Newton and Quasi-Newton (e.g. Levenberg-Marquardt) meth-
ods have been developed for training. Significant speed and convergence improvements
have been reported. However, in all these procedures, given off-line batch data many iter-
ations through the data set are needed to obtain acceptable residual errors for each
selected configuration (number of neurons and input data). This paper describes a fast
way to obtain the weights in feedforward neural networks.

The basic idea of the proposed method is to split the training problem into two nearly
independent subproblems. Both subproblems can be solved by using standard least
squares methods, which leads to a fast computation of the weights. Various configurations
can be tested in a relatively short time. So that afterwards a reasonable choice for a net-
work configuration can be made.

In section 2 the basic structure of a feedforward neural network will be described. Section
3 is devoted to the calculation of the output weights and in section 4 the calculation of the
so-called activation weights will be presented. In section 5 two examples will be worked
out to demonstrate some properties of the training method. Finally some conclusions will
be drawn,

2 Feedforward Neural Networks

To construct a feedforward neural network with one hidden layer, the input vector x(k)

1)email: h.a.b.tebraake@et.tudelft.nl
2) Kluyver Laboratory for Biotechnology, Delft University of Technology
3) Systems and Control Group, Wageningen A gricultural University, The Netherlands

19

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 19-24

and the bias vector can be grouped into a matrix, with one row for each event and one col-
umn for each input (including a column with ones for the biases) X(k) = (x; (k) .. x;(k) ..
xy (k) 1), with matrix X = (X(1) .. X(k) .. X(N,)T. Similarly, the output vectors can be
grouped into a matrix Y(k) = (y, (k) .. y,(k) .. yy ®), with Y = (Y(1) .. Y(k) .. YV)T
Then the neural net can be expressed concisely by:

Z=X-Wh [N, XN,]
V = f(Z) [N,xN,] @
Y=V, W° [N,xN,]

With input X (X e X ¢ R i+ 1) Yandoutput Y(Ye Y R Mo). The function f{.)

is the activation function which, for this paper, is the fanh-function. This function does
have a asymptote at -1 and one at 1. Matrices Z and V contain intermediate results. Matrix
V, e VN W+ D) s equal to V e VVe* i except that one column with ones is added to
express the output bias b°. The set V is a real compact set with values between -1 and 1.
The activation weights are grouped together in a matrix W e RWi+ %N, and the out-
put weights in a matrix Wo e RWVi* 1 *N,

3 Estimation of the Qutput Weights

The elements of the weight matrices W and WP are parameters that must be found exper-
imentally in order to obtain an acceptable fit to the available data. This process is called
training, which is nothing else then finding the global or local minimum of the following
criterion function:

T(Wh W, X, Y) = el 2)

where e is a vector with modeling errors and || . || is a suitable vector norm. Usually this
function is minimized by means of gradient based iterative search algorithms, like back-
propagation, Levenberg-Marquardt or SQP (Sequentially Quadratic Programming). To
obtain a non-iterative training scheme, the proposal is to split the training problem into
two subproblems which each can be solved separately. Of course this does not always
imply that the overall problem can be solved optimally, but application of the proposed
method to real-life processes, showed that satisfactory results can be achieved.

The first subproblem is the estimation of W and the second subproblem is the estimation
of W°. The method to obtain W" will be described later on. The estimation of W° will be
worked out in this section. To obtain W, first assume that the weights W are already
known, and therefore V, is known, too. Suppose that the true output can be modeled by:

Y = V,Wose)

The vector e denotes the modeling error. A parameter estimation problem remains which
is linear in the parameters. By minimizing the sum of squared modeling errors the well
known least squares estimation of W€ then becomes:

A O
W = [VIV,]-IVIY @

The ‘hat’ denotes the fact that the related variable is the estimation of that variable. The

20

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 19-24

matrix V]V, must be nonsingular otherwise [VIV,] ! would not exist. This implies
that V, must have rank N+1.

4 Estimation of the Activation Weights

In the previous section it was demonstrated that by splitting up the training into two basic
subproblems the elements of the matrix W° can be calculated with eq. (4). Before this can
be done, the matrix W must be obtained first. Te Braake and Van Straten ([1]) have
shown that by taking the weights randomly good training results can be obtained. In this
paper an extension to this approach will be described. Here a piecewise linear approxima-
tion will be used to choose the activation weights. In either method precautions on the
choice of W” must be made, because the matrix Z in eq. (1) must satisfy general condi-
tions in order to guarantee that the least squares output weights estimation problem (the
second subproblem) can be solved (see eq. (4)).

The basic idea is that the input data multiplied with the activation weights, i.e. matrix Z
from eq. (1), must be correctly spread out over the relevant area of the nonlinear activa-
tion function. One can easily demonstrate that if —c < z (k) < ¢, where c is the point were
|df/dzl = ¢ (e issmall, real and nonzero scalar), and z(k) is one element of Z, tanh(z(k))
is non-saturated. If |z(k)| >> ¢ for all j then z(k) is in the saturated part of the activation
function and then f(1z (k) 1) =f(1z (k) + 81) = 1, with § a small real number. The train-
ing therefore probably will fail to find a correct mapping between input and output. If
1z(k)| << ¢ then the mapping is concentrated around —e <z (k) <&, with € a small real
number. Then f(z (k)) becomes an almost linear function of z(k) which leads to an ill-
conditioned matrix inversion [VZVb] -1

It W is of full rank, then the matrix product XW?" causes that the rank of Z (see eq.(1))is
equal to the rank of X. If the function f{.) (as used in eq. (1)) is a linear function or a power
function (e.g. f{.)=2%), the columns of V, still will not be of full rank. However, if the
function f{.) is a kind of exponential function (for example f{.)=¢%) V in general will have
full rank (see [2]).

The estimation W” is based on the assumption that a nonlinear function can be approxi-
mated by a sequence of linear functions based on a linear least squares estimation of the
parameters of the linear parts. The parameters in these equations then can be used as the
elements of W”. Each neuron is assigned to a specific subset of the complete data set and
the network is built by sequentially assigning a neuron to each subset. The neuron number
is the same as the number of the subset under consideration. For the partitioning of the
data set several techniques can be used. In [2] a description of these techniques is given
and also the details of the method are presented in that reference.

Suppose a feedforward neural network has to fit a certain (static) function y = f(x),
xe XcR¢ *Yi and yeYg lRNe x1 . Then, a data set ® can be created with ‘measured’
input/output pairs, or ® = [X Y:| . By partitioning the matrix ® into N, subsets, it is pos-
sible to construct a linear model for each subset ®", with ®"c® and
ne {1..N,} cIN.Thelinear model is then given by:

Yn = X"Why ph 5)

21

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 19-24

The weights W/ (Whe w RV)and b" can be calculated with OLS (ordinary least
squares) resulting in:

[wi] = &% TR ®

In this equation X" is the matrix X" supplied with an extra column filled with ones,
needed to express the biases b/ Y” is a scaled matrix Y” with the following property:
lf(” « < ¢, with ¢ the value where |df/dz] = ¢, (fis the activation function and ¢ is a
small positive real scalar).

Every linear function describes the mapping between input and output for that particular
subset n. Finally, after calculating Ny, linear models, the matrix W* is build as follows:
WiwWE L WE L WE
we=| | ! il ¢ RO D XN, %)
bt bk bh b
1oby o by o by
If, after finishing the training phase, the trained neural network is used, then each sub-
model will be extrapolated out of the particular working range. The estimation of the out-
put weights, with eq. (4), then fits the particular nonlinear submodels to the data.

5 Example

In this section an example of a static mapping will be given to show some particularities
of the proposed method. To compare the results of the RAWN approach, the iterative
training is performed with the Levenberg-Marquart algorithm (L-M). The gradients,
needed to calculate the search direction, are calculated analytically. The Hessian is
updated with the BFGS formula [3]. This training method is used instead of the backprop-
agation algorithm because it is faster, more stable, more robust and it gives better results.
In Fig. 1 the result of the training with I.-M is given. This result was not directly available.

LM, SSE=8.556e—6 LM, SSE = 5232

Fig. 1 Left: Training resxult of the configuration with 4 neurontv in the hidden layer and
trained with a combination of Backpropagation and Levenberg-Marquardt. ‘-’= network out-
put, ‘+’ = data. SSE=8.556e-6. Right: Result on the test set (extrapolation) SSE = 5.232

Several training sessions with different initial weights were necessary to obtain an accept-

able fit. The result shown in Fig. 1 is obtained after ‘initialization’ of the weights by a few

backpropagation runs. Note that only 32 points are used to train the network. Not much
computation time is necessary for training. If more data was used then the time needed to
train the network would increase rapidly with increasing size of the training set. The net-
work shows a good performance on the training set. The result on a test set is shown in the
same figure. It is clear that the network is only to a small extend able to extrapolate the

22

'ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 19-24

results.

The RAWN training procedure, is also applied to this example. The overall training result

LM, SSE = 6.961e~6 LM, SSE = 1.631

-2 -1 o 1 2 3 4 s - -4 -2 [2 4 6

Fig. 2 Left: Training witf; RAWN network with 4 neurons, trainedx Fuzzy Clustering and opti-
mized scaling, SSE = 6.9e-6. Right: Extrapolation SSE = 1.631.

is displayed in Fig. 2. The training result is slightly better than the result obtained with the
L-M algorithm, the result on the test set shows the capability of the network to extrapolate
(to some extent). In case of the sine example, it was found that using different data sets
and different number of neurons, the extrapolation was always better then in case of the
network trained with L-M. This is probably due to the linear submodels, causing the
model to find the correct direction at the borders of the data set.

To compare the training methods in case of potential over fitting problems, both training
procedures will now be tested on the same example but now zero mean white noise with
a standard deviation of 0.1 is added to the output y. On the left hand side of the next figure
the training result of the L-M training is showed and on the right side this training result is
compared with the undisturbed output. The amount of training iterations is the same as in

LM, SSE =0.2716 LM, SSE =0.1716

Fig. 3 Left: L-M Trainin;7 result of neural network with 4 hiddexn neurons. ‘+’= real, with
noise disturbed, data, ‘-’ = neural network output.SSE = 0.27. Right: Training result com-
pared with the real undisturbed output. SSE = 0.17

the undisturbed case. In Fig. 4 the same data set is applied to a network trained with the
RAWN method. From this example it can be observed that the iterative L.-M method suf-
fers from over fitting . The RAWN training method does not have this drawback. Given
the fact that both the activation weights and the output weights are calculated with an opti-
mal linear estimator results in less problems with over fitting, i.e. the training algorithm
works like a noise filter. However, note that if more neurons are used the over fitting prob-
lem also would occur. The computation time to estimate the weights in case of the RAWN
method was less then training with L-M. If bigger data sets and more complex neural net-
works are used then the difference in necessary training time increases considerably.

23

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 19-24

RAWN, SSE = 0.3701 RAWN, SSE = 0.05806

~2 = o 1 2 3 4 E -2 -1) 1 2 3 a

Fig. 4 Left: RAWN Train;'ng result of neural network with 4 hidden neurons. “+'= real, with
noise disturbed, data, ‘-’ = neural network output. SSE = 0.37. Right: Training result com-
pared with the real undisturbed output. SSE = 0.06.

6 Conclusions and Discussion

Good results can be obtained with the RAWN-method. One reason for this is the fact that
the problem is split in two subproblems and both subproblems are solved separately and
optimally. The estimation of Whis optimal in the sense that the obtained weights are an
optimal solution to the stated criterion, which is the minimization of the modeling error of
the submodels. This is also the case for the estimation of W°. So one can expect that the
complete training problem is solved suboptimal.

It is clear that the RAWN is very fast compared to backpropagation and L-M. It only
needs seconds to calculate the estimates for W" and W°. The described method is very
suitable and flexible for the identification of nonlinear processes with neural networks.
The importance of the configuration and the training signal requests that a lot of configu-
ratiohs must be trained to see which one is the best. Thus fast training is required.

Both training methods, L-M and RAWN, can be compared to each other with various
measures, e.g. calculation time for training, accuracy of the training, amount of necessary
a-priori knowledge, flexibility and the sum of squared errors of the test set. Although it is
impossible to extend the results of the example to a general conclusion about both training
methods some remarks can be made. Application of the method to various real-life mod-
eling problems did show that the method is worthwhile to consider as a interesting train-
ing algorithm for neural nets with one hidden layer. Moreover, although it was not shown,
the proposed method is also applicable to model dynamic systems.

References

1 HAB. te Braake, and G. van Straten, (1995). Random Activation Weight Neural Net (RAWN)
for fast non-iterative training. Engineering Applications of Artificial Intelligence, 8, 71-80.

2 HA.B. te Braake. (1995). Two Step Approach in Training of Regulated Activation Weights
Neural Networks (RAWN). Internal Report R95.043. Control Laboratory, Delft University of
Technology. October 1995.

3 H. Demuth and M. Beale. Neural Network Toolbox for use with Matlab. The Mathworks,
January 1994.

4 RS. Scalero, and N. Tependelenlioglu, (1992). A fast new algorithm for training feedforward
neural networks. IEEE Transactions on Signal Processing, 40, 202-210.

5 8. Singhal, and L. Wu, (1989). Training feedforward networks with the extended Kalman algo-
rithm. IEEE Proceedings, 1187-1190.

24

