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ABSTRACT: The purpose of this paper is to introduce the mathematical
concept of Bayesian-separability applied to logical functions that leads to a
direct calculation of the Perceptron weights in order to synthesise Boolean
functions avoiding iterations. As far as Bayesian-separability is slightly
more restricted than linear separability, a second result is its extension to
the concept of m-separability in order to cover most of the linearly
separable Boolean functions. Finally, an extension of the present
methodology to deal with any Boolean function is given. This procedure
gives rise to a Perceptron network structure.

1.Bayesian-separability

Let R" be the n-dimensional Euclidean space, as usual, and the pair B={0,1} its
Boolean basic set; B" is the set of the vertexes of the unit cube in R™, and the
cardinal of B" is 2",
Let xe B" be the vector {x,,..x,} that represents a vertex of B" and Vi, x;=0 or x;=1.
Any subset Ac B™ of cardinal n,< 2" defines a partition of B" and its characteristic
function is called a logic Boolean function L,

VxeBn Lox)=1lifxe Aand L (x)=0ifxeA, (orxeA’)
Let We R be any vector (Wo:Wy,W, ) and X eR™! the vector {1 X1,%, }» then
the function y—s1gn[3\_’ X] is called a Perceptron. Equation WX =0 gives the
Perceptron hyper plane Py, c R" [1].
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DEFINITION 1

A logic Boolean function L is called linearly-separable (L-separable) if
3WeR™! such that VxeB® L AR) = sign[W'X]

From the point of view of the Bayesian probability it is possible to calculate a

separation hyper plane Py, following the argument below,

DEFINITION 2

The conditional probability for each component "i" will be,
P(x=1/x€A)=p;, P(x;=0/x€A)=1-p;,
P(Xi=1 /_)5_6 A' ) = nl . P(Xl=0 /KE A ) = 1-’]"'l

If £;e{0,1}, then we could write,

POxi=t; / x€ A) =pti (1-p; )57
If the vector components are independent, the probability for each vector knowing its
class membership will be,

n

P(ty=E .. Xk /56 A) =] | PCi=t; /xe A) = [ | pSica-p; )50
i=1

i=1

n n
P(x;=£,,..., x,;=E / x€ A) =H P(x;=; /x€ A) = I_Il ﬂigi(l-ﬂi )(l-éi)
i=1 1=

Making use of the maximum likelihood theorem, we can employ the statistical mean,
p; for A, and n; for A', for each component [2],

. 1 1
fori=1...n, p;= n, z X;, and mM;= 2n-nA 2 X
XEA X€A
Now if we are interested in the ownership probability of each vector x to class A
P(xe A / x1=§,...xy= ), and to class A' P(xe A’/ x;=€;,...x;=§,). We could
apply Bayes theorem on both classes, equalising the resulting expressions, and after a
few algebraic manipulations we will obtain the separation hyper plane between the
members of class A and the members of class A', as done in [3],

(1-m; n 1-0:
& Logplf(l:q‘_)) +Log nA + Logl—_%lj =0 1.n
i=l..n Mh-P; 2m STom 1
With this expression we retrieve the Perceptron structure using as weights,
{(1-m; n 1-p; :
w; = LogM andw_= Log—;;é— + Log---‘-)l (1.2)
nill-p) R e L

then a logic Boolean function L, is called Bayesian-separable, (B-separable) [4] if

VxeB", L, (x) = sign[W' X] .

It is not difficult to see that for n<3 any L-separable Boolean function is B-separable
[4). One can understand the high interest of B-separability as, instead of using
iterative learning algorithms, the mere calculation of statistical means gives the
weights of the Perceptron, thus highly simplifying the synthesis of these functions.
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Unfortunately for n>3 there are L-separable logic Boolean functions not B-separable,
which means that the hyper plane obtained by (1.2) is unable to correctly separate the
classes A and A’ obtaining some misclassified vertexes. As an example the following
L-separable function shows one misclassified vertex, x;, let us see it,

X) X2 X3 X4 Ly X] X2 X3X4 Ly
x1 0000 O X 1000 O
x2 0001 1 x01001 0
x3 0010 1 X311 1010 1
x4 0011 1 21011 1
x5 0100 1 31100 0
x 0101 1 x41101 0
x7 0110 1 51110 1
x3 0111 1 X6 1111 1

Table 1

Using this function table we can easily obtain easily the membership probability for
each class,

P(x,€ A fx;)= (T 1)*G1*52/112)*(11/16))/0.748=0.518
P(x, € Alx; )= ((1/5)*1#(3%/5%)*5)/0.748=0.482
Therefore P(x;€ A /x;)>P(x; € A'/x,) and the Bayesian hyper plane will misclassify

this-vertex. The preceding example allows us to introduce the concept of erroneous
vertexes.

DEFINITION 3
Given a Boolean function L, (x) a vertex or vector X is said to be erroneous or

misclassified by B-separable if,

i) Lo® =0andP(xeA x)>P(xeA/x);

ii) Lpa&)=1andP(XeA /x)<P(xeA'/x)
A more powerful concept, based on 'm’ repetitions of erroncous vertexes called m-
separability [4] is presented in the next section.

2. M-separability

For a given non-B-separable logic Boolean function, the direct application of B-
separability yields a Perceptron such that for the vertexes x* € E it gives an

erroneous answer, Vx* € E L, (x") # sign wWix*

The subset E ¢ B" is split in E = E,U E_, where E,_ corresponds to the erroneous
vertexes such that L A(gg*) =1 and E_ to those where : L A(;*)=0. The cardinals of E,
and E_ are respectively n, and n_ . A new Perceptron W . can be obtained by
modification of the statistical means calculation as follows,
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-———1——— (mn_ Zx*i + ZXi) @.1)

1
Pi= (0, 25T+ ), M TP~
x€E,  xeA x€E_ X2A
It can be seen from the above expressions that the new statistical means include the
repetition of erroneous vectors m times. The main idea is to move the hyper plane
direction prec1sely to recover the erroneous vertexes by giving them more and more
importance in means calculations.

DEFINITION 4
With the same formulae as before for the components of the weight vector W, a

logic Boolean function L, is called m-Bayesian-separable (m-separable), if,

VxeB® L,(x) = sign[W,, "X] 2.2)
Applying m-separability to the example of table 1, with one erroneous vertex and
trying with one repetition gives the following results for the Bayesian probability,

PiX € A' [X )= ((2/6)* 1*(4%/62)*6)/1.283) = 0.693

Pi(X € A [X;) = (T/1)*G/11)*(53115)*11)/1.283) = 0.307
Therefore P(X;€ A' /X;)>P(X; € A/X;) and the new Bayesian hyper plane will
correctly classify this vertex, using only one repetition, m =1. Then L, is called 1-
separable.
As a remark of the importance of the m-separability concept we found that for n = 4
any L-separable logic Boolean function is m-separable. Moreover it must be noticed

that_there are 65536 logic Boolean functions in B and 1882 are L-separable [7],
among them 922 are B-separable, 832 are 1-separable and 128 are 2-separable, so the
concept of m-separability enables the realisation of 960 functions [4].

Unfortunately the present methodology does not cover all the L-separable functions
for n 25, even though for n=5 is possible to synthesise 75% of all L-separable
functions with m=4 as maximum number of repetitions [4]. As the dimension of the
Boolean functions increases, it is more difficult to estimate the percentage of
synthesised functions, and obviously the maximum number of repetitions also
increases.

One important point in the search of m-separable functions of n components, is to
have a relation between the maximum number of repetitions m and the dimension of
the Boolean function n.

There is a L-separable class of Boolean functions that has only one erroneous vector
but it needs the maximum number of repetitions at least for n=4 and n=5. The
geometric structure of all this functions is a n-1 hyper cube plus one element in one
class (A or A"), or a n-1 hyper cube minus one element in the other one. Considering
the members of this class as the worst m-separable functions, which means that they
need the maximum number of repetitions for each dimension to be synthesised, it is
possible to obtain the following relation between m and n, [4]

m+1 2724 14m\n-2 N 22 1\n-2 23)
(2“'1+1+m) 2™l 14m 1y )
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3. Decomposition in B-separable functions

We shall exploit the above results for the realisation of logic Boolean functions,
notwithstanding if they are or they are not linearly separable [5].

DEFINITION 5

Let L, be chosen as reference logic Boolean function, and let us define a subset
A*cB", and its logic Boolean function L *, then let us define the logic Boolean
function Lg by, Lg(x) =0 ifLy()=La«(x) and Lg()=1 if Ly #L+X).
Obviously L,(x) =L*(x) XOR Lg(x), where, as usual, XOR means the Boolean

exclusive disjunction.
The formula stated for B-separable applied to a non linearly separable logic Boolean
function L L yields a Perceptron W, «, and its logic Boolean function is Ly »(x) =

mgnl}yA* X], that differs from L, .
The subset of erroneous vertexes is E = AUA® - ANA”; if the logic Boolean function
L is B-separable, then the function that recognises the errors is realised by another
Perceplron L) = s1gn[)YE X] and then,
LK) = (sign[W 4" X])XOR( sign[W" X])

If the logic Boolean function Ly, is not m-separable, it will be labeled Ly, then the
same construction may be applied. If after k iterations the error function L, is B-
separable, the realisation of L, takes the form:

L) = (sign[W 4 » _]) XOR ( sxgn[ﬂm X])XOR.. (s1gn[ﬂEk X1)

K K /’-;'-.
() —sfo) st W- Co)—+(s .
Figure 1
As we can see in figure 1, the realisation of any logic function either linearly

separable or not consists in a concatenation of functions, synthesised by a Perceptron
and each one correcting the errors of the preceding function.
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4 - Conclusion and open questions

The automatic search for a structure in neural networks is a real problem [6]. In the
first part of the paper we have found a direct, simple and fast way to synthesise
linearly separable functions. The results show that with B-separability and his
extension m-separability, we cover a broad range of linearly separable functions of
any dimension that can be implemented uniquely by making statistical means
calculations.

The last result, as shown in figure 1, is very appealing and implies that any Boolean
function, either linearly separable or not, can be realised by k+1 Perceptrons in
parallel and a sequence of XOR functions, with the possibility of giving rise to an
architecture for circuit integration. Nevertheless for being able to exploit that result it
is necessary that no closed loops appear in that decomposition. i.e. the next obtained
error function, e;, has the same output vector that a preceding one ¢j, where i>j.

Further research examines if absence of loops is a sufficient condition for convergence
of the method, as well as to avoid cycles with partial repetitions of the error set.
Using this last methodology we are able to synthesise all linearly and non linearly
separable functions for n=5.

Another question that has been examined elsewhere [4] is to find a different extension
to the B-separability concept that covers all L-separable functions, and a partial
solution has been proposed by the use of fractional repetition, replacing m by a
rational number.
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