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Abstract. Artificial neural networks work with numbers. To apply them to
non-numeric data one has to represent this data by numbers. Finding an
appropriate numeric representation is a difficult task which usually involves
some general heuristics, common sense and some intuitions about the
behaviour of neural nets and the problem itself. In this paper we present an
approach to automatic discovery of optimal representations of data for feed-
forward multilayer networks. The resulting algorithm extends in a natural
way the standard backpropagation scheme.

1. Introduction

Many practical problems that are solved by neural networks involve non-numeric data.
For example, in the field of medical diagnosis one deals with symptoms, observations,
types of diseases, etc. The first successful application of neural networks, NETtalk [9],
dealt with characters. On the other hand, neural networks, almost by definition, can
process only numbers. Therefore, before applying a neural network to non-numeric
data, one has to represent this data by numbers. Sometimes also numeric data has to be
transformed into other form which is more suitable in the given context. Surprisingly,
although it is obvious that the final performance of the network strongly depends on the
chosen representation, there is no systematic methodology for constructing such
representations. In the available literature only some specific aspects of data
representation are investigated: missing values, discretization of domains, scaling, {6],
[3]. Moreover, in several textbooks on neural networks, e.g., [1] or [10], one can find
some general hints dealing with this issue.

Let us consider the following example. Suppose that we want to apply a neural
network in the context of car insurance. One of the variables that will certainly play an
important role is the color of a car. For simplicity, let us restrict the set of possible
colors to [white, green, red, black]. How should we represent these colors by numbers?
Should they be mapped into [1, 2, 3, 4? And maybe into [1, 5, 4, 9]? Units of the network
are monotonic with respect to their inputs so it is reasonable to search for such
representations that reflect somehow a "structure of importance” of these colors. In
other words, any representation imposes some (implicit) topology on colors. For
example, the first representation may reflect our intuition about visibility of cars: white
cars are more visible than blue, blue are more visible than red, etc. The second
representation reflects another intuition: white cars are much better visible than red and
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blue ones, black cars are very bad with that respect. Clearly, it is difficult to make a
choice without deeper knowledge about the importance of colors in this particular
context. Usually we take a representation which, in our opinion, reflects the
"importance structure" of colors in the most adequate way; the network should,
hopefully, adjust itself to possible mistakes that we have made, producing good results.
One might also try to use a 'neutral' vector representation: white is represented by [1, 0,
0, 0], blue by [0, 1, 0, 0], etc. But it implies adding extra input nodes to the network and
usually leads to networks that have very bad generalization performance (especially,
when the number of colors is relatively big). ,

In this paper we will focus on the issue of automatic discovery of optimal data
representations. Obviously, to talk about optimal representations we should have a
specific network in mind: different networks may require different representations. In
our approach we focus on conventional multilayer feed-forward networks. For such
networks we present a generalized backpropagation algorithm that operates directly on
arbitrary data (not necessarily numeric) producing an optimal representation and
simultaneously training the network. The algorithm can also be used for problems that
involve both numeric and non-numeric data.

2. Definitions and notation

Let us consider a collection of training pairs <pj, Ip1>, <P2, Ip2>, ..., <Ps, Ips>, where
P={p;:i=1,..,8} cD;x..xDj is a collection of input patterns and Ipls tp2; oes
tp2 € RK are corresponding output patterns. Without loss of generality we may assume
that every domain D; has exactly n elements, i.e., D; = {d;;, dj, ..., din}, for i = 1,...,
1. To develop a neural network with I input units that could be trained on our training set
we haye to represent elements of the domains D; by numbers. To this end let us
introduce, for every element dj;, a corresponding variable xjj (a 'code' of dj;) that will
be instantiated in R. In this way we can associate with any pattern p = <dj;7, d2p2, ...,

drir> a vector of variables Xp =<Xjp[, X2p2, .., XIp/> and a vector of their values.
Finding these values is the key problem of this paper.

Let us consider an arbitrary feed-forward network N with I input units and K
output units and let wj; denote the weight of a connection going from unit u; to uj. The
behaviour of this network on input pattern p (or, more precisely: on input vector Xp) can
be described as follows:

the output of any input unit i, op;, is just the value of the variable Xipi
the output of any non-input unit j, 0p;, is flnetp)), where fis a differentiable
activation function (e.g. sigmoid) and net,; = Zw]-iopi.

Now we can define the error made by our network on the training set as a function of
connection weights w and variables x = (x;):

E(W,x) = Y Ep(W,X), where Ex(w,x) = 0.53 (ta — op)’
k

peP
The problem of finding an optimal representation is defined as follows:

Definition
Any assignment of variables x = (x;;) that minimizes the function

E(x) = infE(w, x)

is called an optimal representation of P with respect to N.
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Obviously, the problem of finding an optimal representation is strongly related to the
problem of finding a global minimum of E(w, x): the function E is continues, so

inxf(E(x)) = inf(E(w, X))

thus the global minimum of £ determines an optimal representation and an optimal
setting of weights. From now on we will focus on the problem of finding a minimum of
E(w, x).

3. The Algorithm

To find a minimum of E(w, x) we will modify the standard backpropagation algorithm
which is based on the gradient method [8]: starting with some arbitrary values of w and

x we walk in the direction of - VE(w, x) making steps of fixed size. To apply this
method we have to know partial derivatives of E(w, x), or, equivalently, of £ (W, X).

Theorem
Partial derivatives of Ep(w, x) are given by the following formulas:

2

= — &yjopi, and
owi
oE,
— = - Y Oywi, where
P z}: niWij
O = (4 — ow)f (nety) for output units, and
6111' =

f (netpj)z Spwic for hidden units.
k

Here the index j is varying over hidden units and k over output units.

Proof. For simplicity we will assume that the network has only one hidden layer;
otherwise we should apply induction on the number of hidden layers. Let us note that

variables w;; do not depend on Xpi thus the derivation of the formula for aE,,/awij leads

“directly to the generalized delta rule, [8]. To derive 0Ep/dxp,; we have to apply the
chaining rule several times:

aEp 8 2 aOpk
O ax,,,;( W= o) ;( o)
“z(tpk — op)f (netp) Inety = —Z&kiz WitOpj =
& aXpi P aXpi ;
. 00y onety
_2,(’ 6])/(; wik az:i = - ;5,;1(; wiif" (nety) gjpip] .
But
aXpi a.X'pi B - ll,
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thus

—Z 5pk2 wilf" (nety) onety _ _ 2 5pk2 wif" (net)wi =
3 j aXpi % ;

-—2 wiif' (netpj)z Opiwix = — 2 OrWi,
i k J

what completes the proof.

We can incorporate our formulas in an extended backpropagation algorithm that
takes as input non-numeric data and produces optimal representations and connection
weights:

. For every element of every domain introduce a new variable xij
- Initialize them (e.g. using available knowledge or randomly)
. Initialize weights (e.g. randomly)
- Select an input pattern p and present the corresponding vector of values xp to the network
. Calculate the actual output
. For every unit compute its §
- for output units:
Spj = (netpj)tpj - 0))
- for hidden units:
. Opj = f’(netpj)(Z.(Spkwkj)
6. For every variable xp; compute its &
) Opi = Lpjwij
7. Update weights:
wji = wji + N8pjop;
. 8. Update 'codes':
Xpi = Xpi + N8p;

N W= o

9. Goto 3

Let us note that our algorithm combines two processes: training the network (updating
weights) and learning representations (updating x's). Both processes can be controlled

independently, for example by choice of different 7's for steps 7 and 8 or by allocating
different amounts of time (iterations) to these two steps. In this way the overall
performance of the algorithm could be improved.

The formula for dEp/dxp; could be obtained in a simpler way. Namely, one can
notice that finding optimal values for x's and w's is equivalent to training a network that
can be constructed from the original one. The construction is straightforward: every
input unit of the original network is replaced by an ordinary neuron with » inputs and a
linear activation function (i.e. f(nef) = net). Each d;; should be represented then by a
vector of n numbers, with 1 on the j-th place and 0 on the remaining places (see Figure
1). The resulting network has a nice property: weights of connections between inputs
and linear units correspond to x's. Therefore, finding values of w's and x's is
equivalent to training this modified network, which is just an ordinary feedforward
network with an extra hidden layer of linear units. Clearly, this extra layer is not fully
connected to the input layer. Now, by applying the standard delta-rule to this extra layer
(and keeping in mind that for linear units we have f(net) = 1) we immediately get the
formula for 0E,/0xy; .

The fact that the problem of finding optimal representations can be reduced to the
problem of training a modified network has some advantages: one can directly use much
faster algorithms (e.g., based on conjugate gradient methods) or more sophisticated
error functions (e.g., based on Kullback's relative entropy measure) [2]. On the other
hand, the algorithm presented above has some appealing simplicity and is more efficient
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than a straightforward application of backpropagation to the modified network: in the
latter case a lot of effort would be wasted on processing numerous 0's present in the
input vectors. '

X pi

Figure 1. An input node that corresponds to ith domain and its counterpart in the modified network.

Finally let us note that our algorithm can be easily extended to deal with multi-
dimensional representations. For instance, if we think that the color of a car provides
two independent pieces of information (e.g., it says something about car's visibility and
the character of the driver) it is reasonable to associate with every color two variables
and then apply our algorithm for finding optimal values for them.

4. Experiments

The algorithm has been implemented and tested on Auto Import Dataset (available from
Machine Learning Repository of University of California, ftp:/ics.uci.edu/pub/machine-
learning-databases/autos/. The data set contains 205 records that describe cars imported
to the USA in 1985. Every record has 26 attributes: 10 nominal (including car make,
body style, engine type, etc), 1 integer and 15 continuous. Some records contain
missing attribute values. The set, restricted to numeric attributes, was used in the past
(for predicting car prices) to illustrate the superiority of Instance-based learning (IBL)
over linear regression, [4]. For our purposes we removed some nominal and all numeric
attributes (except the target attribute, price) and consequently, all records that contained
missing values (four). The remaining attributes were: car maker (22 values), fuel type
and aspiration (both 2 values), body style (5 values), drive wheels (3 values) engine
type, number of cylinders and fuel system (with 7, 7 and 8 values, respectively). The
whole set was split into training set (101 cases) and test set (100 cases). Because we
were interested in a comparison between our algorithm and the standard back-
propagation, two series of experiments have been performed: one with ordinary
networks (input vectors were represented by sequences of 0's and 1's of length 56) and
another one with networks trained by our algorithm (input vectors were represented by
sequences of 8 nominal values). As a measure of performance we used the root of mean
squared error made by the network on the test set, RMS; the training was interrupted
when this error started to increase, {6]. Numerous network architectures have been tried
(about 20) and in all cases the difference in performance was not significant-about 1%
with no clear winner. For example, for networks with 3 hidden units, the
backpropagation algorithms reached minimal RMS= 0.061 after 550 epoch, whereas
our algorithm reached 0.048 after 510 epochs. Therefore, on this particular problem,
both algorithms perform equally well. On the other hand, our algorithm gives a better
insight into values of attributes. For example, 'codes' discovered for different makes
corresponded to our intuitions about make-price relation. In another experiment we
trained a network (with 3 hidden units) using 2-dimensional representation of car make.
The resulting set of points resembled a straight line, demonstrating that, with respect to
price, car make should be considered as a one dimensional attribute.
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5. Conclusions

Our approach to finding optimal representations has many advantages. A difficult
problem of finding representations is now solved automatically by the algorithm. The
problem of representing missing values can be solved in a similar way: they might be
represented by the string unknown and the algorithm should find the best value
representing it. The same applies to outliers—extreme values in the training set that have
negative influence on the learning process. Moreover, because derived representation
(x's) contains a lot of relevant information about the data, it might be expected that much
smaller networks would be strong enough to learn the given mapping. Clearly, simpler
networks are more suitable for getting an insight into the problem: the task of network
interpretation (analyzing relations between inputs and outputs) becomes much easier.
The representation itself should also provide a better insight into data. Results of
experiments mentioned earlier strongly support this claim.

There are some open questions left. First of all, it is not clear how the
generalization performance of the network would by affected by introducing extra
variables. On the one hand, encoding extra information about the problem should have a
negative impact on network's performance (due to the minimal description length
principle, [7], [3]), but on the other hand, it may lead to simplifying the network and
improving its performance. Another question deals with the overall behaviour of the
algorithm: its speed, avoiding local minima, accuracy, robustness, etc. These questions
can be answered only by performing more experiments on different problems.
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