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Abstract. Given a two linearly separable finite sets of points X,Y, we
characterize the set of points by which it passes a hyperplane that linearly
separates X and Y. Based on this characterization, we propose a novel
algorithm for ‘testing linear separability.

1. Introduction

Knowing if two classes in a two class classification problem are linearly separable
(LS) can help simplify the topology of a multilayered perceptron neural network.
In this case, a single layer perceptron network can be used to classify them. Also,
identifying LS sub-sets from a non-LS problem can be used to recursively build
a network topology as in the case of the Recursive Deterministic Perceptron
(RDP) described in [4].

We characterize the set of points by which it passes a hyperplane that linearly
separates a given two linearly separable sets X and ¥ and we propose a novel
algorithm for testing linear separability based on this characterization. This new
method is guided because it uses the points of X UY as supporting points to
search a hyperplane which linearly separates X, Y.

This paper is divided in four sections. In the second section some standard
notations and definitions are given, and some general properties related to these
notations and definitions. In the third section several methods for testing linear
separability are introduced and a new original method is proposed which is based
on computational geometry techniques.

2. Preliminaries

The following standard notions are used: Let E,F C R?, Card(E) stands for
the cardinality of a set E. E \ F is the set of elements which belongs to
E and does not belong to F. Let py, P2 be two points in IR?, the set {tp) +
(1—t)p> | 0 <t < 1} is called the segment between py, P> and is denoted by
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(71, Pa); if @ = (u1,...,uq),T = (1, ...,va), then @ T stands for uivq + ... + ugvg.
Two sub-sets X and Y of IR? are said to be linearly separable if there exists a
hyperplane P of IR? such that the elements of X and those of Y lie on opposite
sides of it, this is denoted by X || Y or X || Y (P), thus if X || Y P(w,t), then
VEe X, T&8+t>0andVjeY, dTy+t <0 or (VEe X, W' F+t<0
and V§ € Y, wT§+¢ > 0). Let X,Y C RY, IP(X,Y) ={P|X|Y (P}
Let P € IP, Cy(X, P) is the half space delimited by P and containing X (i.c.
Cy(X,P)={o€ R*| a7+t >0} if for some € X, @' &+1>0)

3. Methods for Testing Linear Separability

The different methods for testing the linear separability between two sets of
points X and Y, can be classified in three groups : the methods based on
the Fourier-Kuhn elimination algorithm [2] or on linear programming [1], the
methods based on the perceptron algorithm {3], and the methods based on com-
putational geometry techniques.

We now present a new algorithm for testing linear separability based on the
notion of class of linear separability.

3.1. The class of linear separability method

In this sub-section, the set of points P of IR? by which it passes a hyperplane
that linearly separates X and Y are characterized.

Property 3..1 Let X,Y C IR® be two linearly separable sets and let C(X,Y) =
R\ (Upep(x,v)P), Then, C(X,Y) = Cy(X)UCx (Y) with Cy(X)nCx(Y) =
0 and, Cx(Y) and Cy(X), are sets which are closed, unbounded, and convex.
Cy (X) is called a linear separability class of X relatively to Y. (i.e, if C(X,Y)
is not empty, then for all the points P not in C(X,Y’), there exists a hyperplane
, containing P, that linearly separates X andY. )

Proof :

Let P(d,t) € P(X,Y), and note Cy(X) = DPEP(X’Y)CX(Y,P), Cx(Y) =
Nper(x,v)Cy (X, P) then Cy(X) and Cx(Y) are convex because

VP e IP(X, Y) Cx (Y, P) and Cy (X, P) are convex.

Moreover, if € R*\ C(X,Y) then 3P € IP(X,Y) such that Z € P. Let
e = Min(d(X, P), d(Y,P) (€ > 0 because XNP =Y NP = 0), hence B(,¢) =
{7e R*|||Z ~§’|I < e} c (R*\ C(X,Y)), thus C(X,Y) is a closed set in R
Let Z € X and 7 € Y and consider the straight line D = {sZ+ (1—s)¥ | s € R}
defined by Z, .

Assume that Cy(X) is bounded, then there exists so < 0 such that for all
s < 80,8Z+ (1 — 8)7 & Cy(X). Let s1 < sg, then s1Z2+ (1 —s1)§ € C(X,Y) (
because X || Y ), then there exists 7, ¢ such that s1Z + (1 — s1)7 € P(w,t) and
X || Y (P(w@,t)), thus, (0T& + ¢)(WT§ +¢) < 0, then there exists 0 < 52 < 1
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such that so@ + (1 — 82)7 € P(w,t) hence, Z,7 € P(w,t)) which is absurd, thus
Cy(X) O

Definition 3..1 Let S be a subset of points in R? and let @ € S; then dimaf(S)
(dimension affine) is the dimension of the vectorial sub-space generated by {Z -
@ | & e S}. In other words, dimaf(S) is the dimension of the smallest affine
sub-space that contains S.

Notations :

o Let Z c R? be a set of d affinely independent points, Pz is the unique
hyperplane of R contalmng Z.

e Let P a hyperplane of R%, and X C R?, Hp(X) is the half of R? delimited
by P and containing X.

e (X,Y) ={Z Cc XUY | Card(Z) = d, Z is a set of affinely independent
points and (X \ Pz) || (Y \ Pz) (Pz)and(X NPz) || (Y NPz)}.

Theorem 3..1 Let X,Y C RR%, such that dimaf(XUY) = d, then X || Y iff
there exists P(w,t) such that dimaf((X UY)NP(w,1)) =d -1

[(X\ P(@,1) || (Y \P(@,1)) (P(d,1)) and (X NP(,1)) || (¥ NP(w@,¢)))] or
[(XUY)CP@t) and X || Y].

Proof :

1) Assume that there exists P (i, t) such that dimaf((X UY) NP(w,1)) = d—1;
(X\P(@,t)) || (Y\P(&,8)) (P(@,1)) and (XNP(@,1)) || (Y NP, 1)) (P&, )
and assume that VZ € (X \P(d,t)), @7+t > 0 and VZ € (XNP(5,1)), 0T 7+

t'>0.

Let a = Maz({|W'TZ+¢t|; 2 ((XUY)\’P(

tl; 2€ (XUY)\P,t)}). et 0<6< 5

then by construction X || Y (P(i°,¢°).

2) Assume that X || Y (P(u,t) and assume by induction that there exists

P(;,t;) such that (X \ P(w;,t;)) || (V' \ P, ts)) (P, t)), (X UuyYy)\

P(wi,t;) #Dand i < k = dzmaf((XUY)ﬂP(wz, ) <d—1. Let Z € (X U
Y) NP(w;, t;) and {#, .. ,’Ud 1} an orthogonal family (i.e. {¥1,...,Ta—1} U {i}

is an orthogonal basis of IR ) such that

P, t;) = {Z+ M+ - 104-1; AL, --sAd—1 € R} and (XUY)FTP(UJ@, i) C

{Z+ M1+ oo+ MeTs 5 A1, A € R}(E < d—1). Two vectors X = {z1,..szq}

and Y{y1, ..., ya} are orthogonal if XTV =0

Assume that (XUY)\P(@;,t;) = {Z1, ..., Zm } and let fi,..., fm be the continuous

functions such that £i(8) = (cos(8)w;+sin(0)4_1)T (Zj—Z) for 1 < j < m. Then

Vi <m, 39 E] 2, 2[f]( ) = 0, actually iij—Z: MO+ Ag_1Tg—1 +AqWs,

then 6; = arctan(— Ei—f'ﬂf;—'_lp) Let 8, = Min({#;;1 < j < m}), Wiy1 =

cos(0,)W; + sin(0,)04—1 and ;4 = — hL1z then (X \ P(Wi+1,ti+1)) || (Y'\

P(Wiy1,tiv1)) (P(@is1,tit1)) and dimaf((X UY) N P(W;, 1)) < dimaf((X U
Y) NP (Wit1,tit1)) because (X UY)NP (W, t;) C (X UY)NP(Wiy1,tit1), 2n €

P(wz-l-la z+1) and zp ¢ P(wiv l)'

Hence, 3% € R%, 3t € R, (X UY) C P(i,t)) or (dimaf(X UY)NP>@,t)) =

t) }) and ¢ = Min({|wT7 +

W, t
, WO = W+ S and t¥ = ¢ + 6t',
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ClassSepar(X,Y,d,w,t)
- data: two data set vectors, X and Y representing
two classes
— result: a weight vector, @ and a threshold ¢ such that which P(w,1)
linearly separate the two classes if X || ¥’
Begin
If A(X,Y) = 0 then not(X || Y)
else
begin
Select Z € h(X,Y);
ClassSepar(X N P,, Y N P,,d—1,d’,t');
e:= Min({|dFa+1tz| @€ (X UY)\ P(dz,t2))});
(Pz =P(lz,tz) );
a:= Maz({|w'Ta+t|de (XUY)\P@z,t2))});

T =Wz + =T;
- £y,
t: =tz + 2cxt’
end

End

Table 1: The class of linear separability method

d—1and (X \ P(@,1) || (V \ P(@,1) (P(,1)) O

Class of linear separability method :

Given X,Y C IR?, the class of linear separability procedure, presented in the
algorithm 1, computes recursively & € IR?® and t € IR (if there exists) such that
X ||Y (P(w, 1))

Theorem 3..2 Let X,Y C R?, such that dimaf(X UY) = d then, Cy(X) =
Nzenx,v)Hp, (X).

Proof :

Let Z € h(X,Y) and &, ¢t,t' such that Pz = P(w,t) and (X N Pz) |
Y N PP, t). Set a = Maz({|@Tc+1¢|; ¢ € (XUY)\P@,t)})
and ¢ = Min({|{wTe¢+1¢t ; ¢ € (XUY)\P,t)}). Let 6 €0,5] and
W = 4 + 6w’ and 0 = ¢ + 6¢', then by construction X || ¥ (P(w°,t°), thus
Cy(X) C Nselo, £ 1Hp(ws 19)(X) hence, Cy(X) C Hp, (X) because Cy(X) is
closed set.

Assume that Nzep(x,v)Hp, (X) \ Cy(X) # 0, and let &€ (Nzenx,v)Hp, (X)\
Cy (X)), then there exists @ € IR and ¢t € IR such that X || Y (P(w,¢)) and
¢e P(d,t).

By using the construction proposed in the theorem 3.2 there exists a hyperplane
Pt = {27+ ML+ oo+ Ag—1¥a—1 5 AL,y Ad—1 € R} with Tq_1 =¢— 72,
{Z+ M0t + ...+ Ag—2T4—2 ; A1,..., Ag—2 € IR} contain a subset I of XUY of d—1
affinely independent points, and V& € X @'7# +¢' > 0, then by the theorem 3.2
there exists 27 € (X UY) \ P(&,#) and 8,» such that @7 (7" — Z) = 0 and
B'T (2" — 2) = 0 where W = cos(0p )W — sin(0p )Tg—1.
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Let t” = —w”TZ, then TU{2”} is a set of d affinely independent points contained

in P(@”, 1), thus P(@”,t7) € h(X,Y), (X\P@,”) || Y\P@”,t") (P(d”,t"))
- T

and VZ € X w’T#+t” >0, but w” T+t <0, then ¥ ¢ HP(U;,,’t,,)(X) which

absurd. SO, CY(X) = mZGh(X,Y)HPz (X) a

Remark :
Let X,Y c IR? such that dimaf(X UY) =1 < d, then the separability problem
for X,Y in IR? can be transformed into a separating problem in R.

3.2. Example

To illustrate how the Class of Linear Separability method works, we will apply
it to a 2-class 2 dimensional classification problem. Let X = {(4,5), (8,6),(2,7),
6,7),(8,7),(5,8), (7,8),(6,9),(1,8)} and Y = {(1,1),(3,1), (5,1), (7,2), (1, 3),
(6,3), (5,4)} represent the input patterns for the two classes which define our
problem. We want to find out if X {| Y. Figure 1-a shows a plot of the 2 classes.
Following the algorithm, we want to identify all the hyperplanes that (a) pass
by one point of each of the two classes and (b) linearly separate the remaining
points.

In this example there is only one such hyperplane as illustrated in figure 1-b.
This hyperplane is represented by P((1,1), —9). We now recursively reduce the
original dimension of the problem to 1 dimension. Once this is done, we calculate
the middle point between the two original points belonging to each of the classes.
Next we calculate a hyperplane in the original dimension which passes by this
middle point and is different than the first hyperplane. This is illustrated in
figure 1-c. The selected two points are highlighted with a circle (® and ®).
They correspond to the points (4,5), and (5,4) respectively. Thus the middle
point has a value equal to (4.5,4.5). This second hyperplane is represented by
P((1,-1),0). With these two hyperplanes we now compute the values of ¢ and
« in the following way:

6
4

e = Min({|@Ld+tz]; @€ (AUB)})
a = Max({|@Té+t|; @€ (AUB)})

were A and B correspond to the set of points by which the first hyperplane does
not pass as illustrated in figure 1-d. We use these values for ¢ and «a to calculate
the final hyperplane which linearly separates the two classes in the following
way:

I

T o= W+ 5w = (-0.25,-1.75)
t = tz+ oot = (9)

This is illustrated in figure 1-e. The final hyperplane is represented by a
dotted line and corresponds to P((—0.25,~1.75),9). This final hyperplane is
illustrated in figure 1-f.
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© o

Figure 1: Steps followed by the Class of Linear Separability for finding the
hyperplane which linearly separates classes z and e

4. Discussion and Concluding Remarks

A new algorithm for testing linear separability has been presented. This new
algorithm transforms recursively the problem of linear separability from d di-
mensions to d — 1. This transformation can require O(n?) operations in the
worse case. Thus, in order to simplify the research of this hyperplane, any hy-
perplane can be used to begin with, which can be move in function of the points
until it contains a d affinely independent set of points of the two classes, and
linearly separates the rest of the points.
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