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Abstract. Basically, MLP are trained by ordinary least square meth-
ods which insure consistent estimations only if data are corrupted with
additive white noise. Unfortunately, this assumption is not very realistic
in many practical situations. In this paper, we show how the generalized
least square method, well known in statistics and in automatic control,
can be used in MLP with modified backpropagation algorithm, and can
improve the estimation when data are corrupted by colored noise.

1. Introduction

Feedforward neural networks trained by error backpropagation are used widely
for nonlinear regression. Given a data set (x;,y; = g(x;) + n;) where x; are
samples of a variable x € R”, y; are samples of a variable y € R and n; are
zero-mean noise samples (usually supposed statistically independent of x;), we
want to find a good approximation of the underlying relationship g(.).

When n; arei.i.d. variables, it has been proved that least square regressor is
consistent [1]. It means that for a large number of data, the estimation residue
can be considered as a white noise. This may be used as a stopping criterion
for incremental learning of neural networks [2], [3]; to avoid the overfitting,
the network growing procedure is stopped when the residue reduces to white
noise. Evidently, if the noise in the model is not 1.1.d., this criterion fails and
the algorithm may progress uncontrollably toward overfitting.

Although in the neural network literature, the case of non-i.i.d. noise is
little studied, the statisticians and the automatic control engineers considered
it more [4], [5]; because in many realistic situations, additive noise is colored, for
example due to transfer function of the measurement devices. The Generalized
Least Square (GLS) algorithm is one of the methods which has been proposed
for improving the estimation when the additive noise samples are correlated
and/or non stationary.

In this paper, we study the neural network realization of the GLS method
and in particular, its variants in the case of autoregressive noise models for
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two purposes: (i) improving neural network approximation, (i) Improving the
stopping criterion of the incremental algorithms. In section 2, we present the
GLS method. Section 3 describes the algorithm for the autoregressive noise
models. Simulation results are presented in section 4, before the conclusion.

2. -Generalized least square method

Assume data corrupted by zero-mean non-i.i.d. noise samples ¢;:
(x5, 4) = (%5,9(xi)+€), i=1,...,n. (1)

Considering the universal approximation property of MLP [6], we can find a
suitable size MLP such that f(x, W*) = E[y|x] = g(x), W* is the optimal
weight matrix. Suppose f(x, W) the class of such networks, we would like
. to find the best approximation of W*. Denoting € = (€1, €2,...,6,)7, y =
(Y1,92,-- )T and X = (x1,Xs,...,%,)7, we have:

y=f(X,W*)+¢€ (2)

Suppose the covariance matrix of € is: De = E[e€T] = 02V, where V is a pos-
itive definite matrix. This hypothesis implies (i) Var{e} may be proportional
to some function of x, (ii) € may be correlated.

Let V = UTU be the Cholesky decomposition of V, where U is an upper
triangular matrix and U7 is its transpose. Multiplying (2) by R = (UT)~1,
we obtain:

z=h(X,W)+$ (3)

where z = Ry, h(X, W) = Rf(X, W) and § = Re. Then F[§] = 0
and Dg = c’RVR’ = ¢?I. Hence, this transformation leads to another
model with i.i.d. error. The Ordinary Least Square (OLS) estimation for the
model (3) consists in minimizing: R(W) = [z — h(X, W)]7[z - h(X, W)] =
[y — £(X, W)ITRTR[y — f(X,W)] and we have:

R(W) = [y ~ £(X, W)]"V™ly — £(X, W)] (4)

The minimization of this last function is usually called Generalized Least
Square (GLS) estimation of (2). Therefore, the GLS method for a colored
noise model is equivalent to the OLS method for a white noise model deduced
from the colored model by a simple linear mapping. Moreover, according to
(3), if we have a good approximation of f(x, W) (so h(x, W)), § is a white
noise. Hence, the stopping criterion in an incremental learning scheme may
consist in comparing § = Re with white noise.

As V is basically unknown, we have to estimate it. A possible algorithm
can be the following: (i) OLS estimating of W, computing the residue, (ii)
Is the residue white? If yes, STOP, (iii) Estimating V using residue, (iv)
Computing V™1, (v) GLS estimating of W. Another strategy, more time-
consuming, consists in repeating the steps (iii)-(v) until convergence.
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There are a few difficulties with these strategies. At first, unless we have
multiple measurements y; for same input x;, estimation of V will be inexact
and even impossible. Moreover, the approximation error of V implies a larger
error in the computation of its inverse. On the other hand, for large training
data bases, the inverse computation is expensive. Finally, if all the entries of
V=1 are non-zero, the backpropagation algorithm will be very time-consuming.
To avoid these problems, we can suppose an a priori model of noise. In the
following section, we choose autoregressive models for their ability to model
sparsely a large class of colored noise.

3. GLS for autoregressive models

Suppose € can be modeled by the autoregressive (AR) model:
e=Ae+n, n iid (5)

A characterizes the influence of ¢; on ¢;. If (I — A) is invertible, (5) be-
comes: € = (I — A)™'n and the covariance of € is: E[ee’] = ¢V = (I -
A) 'EnnT)(I- A)‘lT‘ Finally, as E[nn’] = ¢%I:

V=l = (1- AT)(I- A) (6)

The main advantage of this model is the possibility of approximating V1!
directly from A. Usually A is defined by a few parameters so that: (i) Its esti-
-mation is very simple, (ii) the most of the entries of V! being zero, the time
of backpropagation algorithm stays reasonable. Now, we present the backprop-
agation algorithm for two special cases.

3.1. First order AR noise for dynamic systems and time series

In this section, we assume that z; in (1) are collected at regular time intervals';
z; = z(i7). Suppose that the ¢; form a stationary series satisfying a first order
autoregressive model:

€& =pei—1+n;, n; 1.2.d. | |,0| <1 (7)

2
As n; is independent of ¢;_1: ¢? = 12’;2, In practice, we have data only for a
limited interval {i = 1,..., N}. For ¢, if we select €; = n;, the variance of ¢;

will not be constant. Hence, in our model we admit €; = an; and we determine
2 _ 92 _ o3 e -1 :

o so that 07, = ¢f, = 7=%5. So we obtain: €; = \/—1;’_—;. Then A and V™' in

(5) and (6) will be:

1- 1-p2 0 O 0o o 1 -, 0 0

» o o o o -p 14, —pz 0

A - ° P o o Vo ° - 14e 0
. . . . . . - N - N - 2

0 0 o .. p O 4] [ 0 14+p

10therwise, we can choose: ¢; = p"i—zi—”q_l + n;.
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The only parameter which must be estimated is p and we estimate it by:

A ﬁvazgiéil
p= T ®)
NZz =1 €i

For a Gaussian noise, we accept p = 0 with the significance threshold « if [7]:

VN —2
—1lg/aN-2 < P__l__\/___? <las2,N-2 9)

where ¢, , is such that Prob(T, > tq,) = @, T, being the Student variable with
p degrees of freedom. If p can not be considered as null, we use the GLS version
of backpropagation algorithm which minimizes the modified cost function (4):

AW = —2u(1 — i)e, f( 1)_2 Z(Q_pfz- )(Bf(a:z) 3 af(z‘z 1)) (10)

3.2. k-order AR noise for dynamic systems and time series

In this case, we have:
€ = p1&i—1 + paci—a+ ...+ prei—k + N4, ng 1.1.d. (11)

Denoﬁng po = —1 and using a variance homogenizing scheme similar to previ-
ous section, it can be shown that [8] the backpropagation algorithm becomes:

k k
_ of(x;) 8f(x1 6f(xl 1
AW““”ZZb[ aw taw T Z (Z_ple‘ 1)(2_
i=1 j=1 i=k+1 1=0
' (12)
where: bz A = Zl:tﬁjﬁﬂ_z Z;C kt1—imi PiDitls (G=1,...,k [ =
0,1,...,k— z) and 1t can be verified that: b;; = b;; and b;; = bry1-j p+1-4-

To estimate p - (Pl,P2> .. ,Pk) denotlng 6’ = (‘)71:’)?2: B >7Ak)T and ’yk =
.. Zf\;_lk €i€;4k, we can use the Yule-Walker equations derived from (11):

Yo Lo YE-1
L a1, . 1 Yo .. YE-2
p=I ~ | I'= : . . . (13)
YE-1 YE-2 --- Yo

4. Simulation results

In the first experiment, we try to estimate the function y = 0.5sin(3z), = €
[—0.5,0.5], from 100 samples corrupted by a first order AR noise, using an MLP
with a single neuron in the hidden layer. Fig.1.a illustrates the results of OLS
and GLS approximation for p = 0.9. The test error for two estimators, averaged
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Figure 1: (a) OLS and GLS approximations for a first order AR noise. Test
error as a function of (b) S/N, (c) size of training base, (d) correlation coeffi-
cient.

over 5 experiments, is given as a function of signal to noise (Fig.1.b), the size
of training base (Fig.1.c) and p (Fig.1.d). As can be seen, the generalizing
capacity of GLS estimator is nearly always better especially for the great values
of p and the large training size. The bad quality of GLS for the small training
size is partly due to poor approximation of p. In this case, the first OLS
estimator memorizes the noisy data so that the residue does not represent the
noise. In fact, in all of our experiments, the training error of OLS estimator
is less than the GLS one because the former has a tendency to learn the noise
structure. In Fig.2, OLS and GLS approximation from 100 samples of the
function 0.7sin(wz)cos(2wz), & € [0, 2] corrupted by a second order AR noise
with p; = 0.55 and p2 = 0.4 is given where we used a one hidden layer MLP
with 10 neurons in the hidden layer. For the sake of clarity, only 25 noisy
samples are shown in the figure.

5. Conclusion

In this paper, we derive generalized least square (GLS) versions of the back-
propagation algorithm which provide consistent estimations in the case of data
corrupted by colored noise based on autoregressive models. The comparison
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Figure 2: OLS and GLS approximation for a 2?? order AR noise.

with ordinary least square (OLS) algorithms points out interesting improve-
ments, even with small data samples. In practice, we first use OLS algorithm,
which provides a good initialization of GLS algorithm, which then converges
very fast. Consequently, the complete algorithm complexity is very close to
OLS complexity.
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