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Abstract: We etend the Bayesian framework to Multi-Layer Perceptron
models of Non-linear Auto-Regressve time-series. The gproacd is evaluated
onan artificia time-series and some common simplificaions are discussed.

1. Introduction

Non-linear Auto-Regressve (NAR, [Box et a. 94]) time-series models are a quite
common prediction tool. Because of their general approximating capabiliti es ([Hornik
et a. 89)), fead-forward neural networks (NN) of the Multi-Layer Perceptron (MLP)
type ([Rumelhart et al. 86]) are often used to develop NAR models. However, we
usually build a single NAR model emboded in a single NN. One of the drawbadks of
this approach is that it doesn't allow us to compute cnfidence limits for the
predictions. This problem was partly solved in the Bayesian framework, developed for
non-sequential problems (see [MadKay 92], [Ned 92]), by taking into acount the
influence of model variance on the output distribution.

We shortly present here an extention of this Bayesian framework to NAR
models. Some results of the full Bayesian treament of an artificial NAR time-series
are discussed, together with the mnsequences of some common simplifications. We
then compare, on the same problem, a dasdcd linea technique and a standard NN
approach to time-series modelli ng.

2. MLP implementation of NAR models. a Bayesian framework

Let us consider the NAR(p) process{ X, } . given by

t=1
O X =g(Xey X)) e t>1,p>1,

where g, isani.i.d. variable N(O;of), independent of X,_,,...,X;. We note by D, a

sample X,,..., X, of the process We want to approximate this model by an MLP
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having k units in a single hidden layer. The output unit is linear and its activation
value isgiven by
1

) o(xp,...,xl)=gvitf(j2ilwijD(l-—wiJ, fy)=(1+e)".

We consider k as fixed a priori and we do not deal with its choice here (see [MacKay

95]). We now have a set of functions of parameter w = {W,J R/ } ORP* x R x R¥.
In what follows, the output of asingle MLPis gw(xp,...,xl).

We areinterested in the posterior distribution p(w| D) given by
p(Dw)Cp(w)
p(w|D) = POw)Thiw)

©)
p(D)
p( D|W) being the likelihood and p(w) the prior distribution. We can then compute
@ plxalP) = plis|Dow) ol D, Jaw,

the distribution for the predicted value. This distribution allows us to evaluate
confidence limits for our prediction by taking into account the noise in the data and
the variance of the model. To compute the posterior according to (3), we start by
introducing two new parameters. First, we consider that the prior over w is Gaussian,

k(p+2)
p(wla) = 1/21 [@ il . Second, we note 8 = iz We then have
T o

€

p(DB, w) tp(w|a) Cp(at,B)
p(D) ’
because p(D|a,B,w) = p(D|B,w) and p(w|a,B) = p(wla). The likelihood is

(6) p(D|B,w) = p(x[ ..... Xour [BoW; X xl)Ep(xp ..... x1|B,w).

For non-sequential problems, one can easily express the likelihood as a product
([MacKay 92]). Fortunately, this can also be performed for NAR models

D oyl )= [ ol B,

i=p+l

(5) p(a,B,w|D) =

If we note Ej, (w) ——DZ [x —gW

i=p+l

®) p(DJ&w)zE e PR (B w).

The conditional distribution for the first p values is difficult to obtain. However, since
p is fixed and p<<t, one may consider p(xp,...,x1|[3,w) = p(xp,...,xl) or simply
neglect it. We can eventually compute the distribution for the predicted value,

©  p(xualD)= [p(%/Dpa,Bw)pla,B,w|D,) do dB dw

o,B,w

ictree o Xicp ] and remember (1) we obtain
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for every t. If for all t>t, the dhangesto p(a,B,w| Dt) can be ignored, we may stop

re-estimating it and thus sgnificantly reducethe complexity of the computation.
In contrast, in the standard NN approach one simply looks for the parameter
(a,B,w),,, that maximizes the likelihood (the prior p(w) is unkrown) or the

posterior distribution (p(w) is available), and then wses it to evauate X,,,. Indeed, if
p(a,B,w| Dt) is concentrated around (a,B,w) ., we can approximate the integral in

MP’
(9) by p(x1+1|Dt O e s Bup ,WMP). But we can no longer obtain confidence limits.

Several approximations were proposed for non-sequential problems
([MaKay 92]) in order to make the Bayesian approach more tradable. Similar
approximations are very helpful for NAR time-series:

1° If p(a,B|D) is concentrated around (of,p,Bye ), then a,p and W can be

processed separately and the posterior becomes p(w|D) O p(w|dt p,Byyp, D).
2° We can perform a Gausdan approximation for p(w|cx MP,BMF,,D). For an
MLP having k units in a singe hidden layer, the parameter space W is
composed of several equivalent subspaces (k![2* or just k!, depending on
whether the adivation function of the hidden uritsis symmetric or not). The

Gaussgan approximation will only hold on these subspaces.
3° Eventually, a Gausdan approximation can be used for p(x1+1|D). The most

probable output value and its associated confidence limits can be obtained.

3. Experimenting with an NAR time-series

We performed an experiment on a synthetic NAR time-series. Our purpose was to
evaluate the Bayesian approach and to test the gproximations just mentioned. We
also wanted to compare alinea prediction technique and a standard NN method.

The NAR time-series dould have a significantly non-linear but stable
behavior. After an important amount of tests, we seleded

(10) X =0.90K ~(X —X,,) @™ +g t>2,
with o, =0.1, X, =¢, and X, =0.9[X, +¢, (seefigure 1 for asample). Note that we
used the same model for theinitial valuesin the Bayesian computation.
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Figure 1: A 100-point sample of the NAR time-series.
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The number of hidden urits (k) in the MLPswas fixed to 5for al the experiments. We
considered o and B as independent and set p(1/a)=uriform on [0;5] (quite

arbitrarily), p(1/B) =uniform on [0;Var (time-series)] (we use prior information).

The posterior distribution p(a,B|D) obtained for t = 50 is presented in
figure 2. A Gausdan approximation is obvioudy inappropriate for p(a|D); O yp
doesn't give much information about the entire distribution. For t = 200 we still have
two dfferent pe&ks. For t = 400, however, the posterior is nealy Gaussan.
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Figure 2: The posterior distribution p((x Bl D) for t = 50.

We noticed that the full Bayesian computation of the output distribution (9) was
extremely time-consuming. We dedded to perform this computation only for t = 50,
200and 40Q Figure 3a presents the distributions for the predicted values X, .
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Figure 3: (a) exad and (b) comparison d exad and approximate output distributions.

The threedistributions are nealy Gaussan. Table 1 shows the predicted values, with
their confidence limits, and compares them to the true values. The cnfidenceinterval
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shrinks when t increases: model variance diminishes as more data becomes available,
so that the output variance is more and more explained by noise alone.

t=50 t =200 t =400
predicted x/7¥ -0.3 -0.12 0.09
95% confidence limits [-0.6; 0.0] [-0.37; 0.13] [-0.15; 0.33]
actual x,., -0.636 -0.169 0.234

Table 1: Most probable predicted values, associated confidence limits and the true values.

When using the approximations mentioned before, we obtain a dlightly different
output distribution for t = 50 (figure 3b), but very similar ones for t = 200 or t = 400.

We then trained several MLPs by standard backpropagation on the first 200
vaues of the time-series. The weights were randomly initialized in [-1;1]. Training
was stopped as soon as the residuals passed randomness tests (runs above and below
the median, runs up and down, Box-Pierce). Note that the rather strong amount of
noise in the training data makes overfitting unlikely. The residuals also passed a test
for Gaussian distribution; estimated standard deviation was 0.107 for the residuals [
as compared to 0.1 for the noise injected. The minimal RMS error obtained by an
MLP on the training set was 0.0116. However, the difference between the true NAR
function and its approximation by the best-fitted MLP is significant (figure 4a). In
fact, the transfer function for the MLP is nearly linear on the domain of interest.
Indeed, the training set (figure 4b) covers a quasi-linear region of the target NAR
function (the non-linear character is not manifest). Preliminary tests have confirmed
that such MLPs could approximate well enough the true NAR function on [-1;1]°.
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Figure 4: (a) true NAR function minus MLP approximation, (b) histogram of the training set.

We can then expect to obtain good linear models for this data set. Several ARMA
models were fitted to the data. The residuals passed the randomness tests only for the
AR(3) and ARMA(1,1) models. The estimated standard deviation of the residuals was
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0.109and the RMS error on the training set 0.012 We seethat the diff erence between
the MLPs and the best linea modelsis not significant for this time-series.

4. Conclusion

The Bayesian framework developed for non-sequential problems was extended to
MLP models of NAR time-series. This approach allows us to propose @nfidence
limits for the predictions, by taking into acount input noise and model variance Note
that the prior distribution is very important: usualy, when the prior is gronger, the
confidencelimits are doser, but unfortunately the biasis higher.

We noticed that a full Bayesian treament presents a very high computational
cost. However, common simplificaions can be successully applied if enoughdata is
avail able. Other approximation techniques are being evaluated, such as the use of a set
of NN to oltain the output distribution. This sensto be necessary if we want to make
the Bayesian approach tradable for more complex time-series.
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