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Abstract

In this work new Decision-Feedback (DF) Neural Equalizers (DFNE) are introduced and
compared with classical DF equalizers and Viterbi demodulators. It is shown that the choice of
an innovative cost functional based on the Discriminative Learning (DL) technique, coupled
with a fast training paradigm, can provide neural equalizers that outperform standard DF
equalizers (DFEs) at practical signal to noise ratio (SNR). In particular, the novel Neural
Sequence Detector (NSD) is introduced, which allows to extend the concepts of Viterbi-like
sequence estimation to neural architectures. Resulting architectures are competitive with the
Viterbi solution from cost-performance aspects, as demonstrated in experimental tests.

1. Introduction

Digital equalization of signals is required in any modern radio link or cellular telephony
system. The decision-feedback equalizer is often employed, because it is simple and
offers a better performance with respect to the linear equalizer [1]. A more complex
approach to equalization is represented by the Viterbi algorithm, which exploits the
knowledge of the mapping between transmitted and received sequences. However the
channel model must be estimated from a preamble, which should be relatively short in
order to maintain an adequate transmission efficiency. Estimation errors or channel
miss-modelling (arising from non-linearities), Doppler effects and non-stationarities
can impair the effectiveness of the Viterbi demodulator in real-world environments.
Moreover, the Viterbi algorithm is much more expensive than the DFE, which
precludes several high-speed and low-power applications. For these reasons, the DFE
remains an attractive solution in many cases.
Neural nets provide powerful non-linear processing architectures, which have been
proved to outperform traditional linear techniques in many common signal processing
applications. In particular, neural networks have been proposed for digital equalization
of communication channels [2][3][4].
Traditionally, the problem of equalization has been considered equivalent to the
inversion of the transmission channel. Anyway, channel inversion  is a problem in
case of non-minimum phase channels, which are common in real world. An alternative
and innovative approach considers equalization as a classification task [3][4],
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consisting in establishing the correct mapping between received signals and target
symbols. Linear and DF equalizers can be considered also as classifiers; however,
being based on a (single-layer) linear combiner in the state space, they are limited in
the shape and the complexity of the decision regions that they can form. Conversely,
multilayer and recurrent neural networks are able to provide arbitrarily shaped decision
contours [5] and are well known to yield very good supervised classifiers [8]. Anyway,
drawbacks of neural networks are the high number of free parameters and the presence
of non-linearities, that can slow down the optimization process. An important
requirement is thus the use of fast learning strategies, able to guarantee safe global
convergence and fast local descent to the optimum of the cost functional [6].

In the first part of this paper we describe a novel general approach to the equalization
of digital signals, which satisfies the desired requirements of robust and fast
classification. The proposed technique embodies the computational paradigm of
neural nets in a DFE-like architecture. The new DF Neural Equalizer (DFNE) makes
proper use of a powerful optimization technique (BRLS [6]), coupled with an error
functional which has been proved to be particularly effective  in classification tasks
[7]. In the second part we introduce the Neural Sequence Detector (NSD), which
incorporates the concepts of Viterbi-like sequence estimation into neural architectures
for the equalization task. Performance comparisons with standard techniques for
different channels demonstrate the validity of the proposed approach, expecially when
the data model departs from assumptions and the computational cost is a critical issue.

2. Channel model

In fig. 1 a typical transmission system is depicted. s(k) is the transmitted symbol
stream, n(k) is the additive noise, supposed zero-mean and Gaussian distributed. The
channel may be non-linear, but the input-output symbol sequence map is assumed to
be unambiguous. In modern interference-limited cellular telephony systems, the main
error source is the Inter-Symbol Interference (ISI), rather than the thermal noise. The
ISI consists in the spreading of symbol information through subsequent signal
samples, and is the main problem in the relatively high SNR environment (10-20 dB),
typical of most existing transmission systems.
The purpose of the equalizer is to estimate s(k), minimizing the combined effects of ISI
and noise. In particular, the DFE makes use of a set of delayed input samples and past
detected symbols [1].

channel equalizers(k)
y(k)

n(k)

u(k)
s(k)^

Fig. 1: typical transmission system.
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3. Neural Decision Feedback Equalizer

Recurrent Neural Networks (RNNs) can be successfully applied to the adaptive
equalization of digital communication channels [4]. RNNs are able to yield significant
performance when little information is available on the channel model. This fact can be
explained by the very general assumptions made on the mapping from the received
signal to the output symbol space, that recast the demodulation problem as a
classification task.
The proposed neural network (depicted in fig. 2) is an evolution of the classical DFE
and is considerably simpler and faster than existing structures, being composed of a
two-layer perceptron. This architecture can be viewed as a RNN with an external
feedback. Samples contained in both the input and the feedback tapped delay lines
(TDLs) constitute the inputs to the first neuron layer. During the learning phase, the
feedback TDL is fed by an internal replica of the transmitted preamble sequence. Then
the switch commutes from position 1 to position 2 and the equalizer enters into the
decision directed mode (DDE).

F e e d f o r w a r d
N e u r a l  N e t w o r k

I n p u t  t a p p e d
d e l a y  l i n e

F e e d b a c k  t a p p e d
d e l a y  l i n e

2

1

D e c i s o r

u ( k )

s (k )

s (k )^

z (k )

Fig. 2: Neural Decision Feedback Equalizer

The weight updating is made by the Block Recursive Least Squares (BRLS) algorithm
described in [6]. This approach searches consistently for a local minimum of the error
functional in a Newton-like fashion, thus allowing for a superlinear convergence rate.
The choice of the cost functional should be related to the concept of equalization as a
classification problem, where the objective is the separation of clusters generated by
mapping the transmitted symbols through the channel input-output relationship. The
usual choice of the Mean Squared Error (MSE) criterion might not fully satisfy the
requirement for optimal classification.
Discriminative Learning (DL) was introduced in [7] in alternative to the MSE criterion
as an enhanced tool for optimizing the boundary decision of non-linear classifiers. In
the following we briefly recall the main concepts of DL.
Suppose that the aim of training is to associate an input pattern u(k) to one of M
possible classes. As a first step, M discriminant functions gi(u(k),w), depending on the
network parameter vector w, are introduced. The second step is the choice of an
appropriate miss-classification measure, which is continuous with respect to the
weights w; a possible definition is the following:

1

1
( ( )) ( ( ), ) ( ( ), )

1

p
p

i i i
i j

d k g k g k
M ≠

 
= − +  − 

∑u u w u w  (1)
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This equation gives a measure of the classification error when the input belongs to the
i-th class; in the simple case of two classes (BPSK), it reduces to the difference
between the outputs, so di(u(k)) < 0 means miss-classification, while di(u(k)) > 0
implies a correct decision. The positive integer p is usually selected between one and
two, depending on statistical properties of noise.
As a third step, the following error functional is defined as a function of the miss-
classification measure:

( ( ), ) ( ( ( ), ))i i il k l g k=u w u w (2)

being li a differentiable zero-one “squashing” function, like a sigmoid or an
exponential. The objective of learning is thus the minimization of the error functional li

with respect to the weight vector w, which can be performed by applying methods
well-known in optimization theory.
This formulation allows to express the minimum classication error (or Bayes minimum
risk) directly in terms of the functionals li when the discriminant functions gi(u(k),w)
give exactly the a posteriori probability of the i-th class given u [3]. This means that
the minimum classification probability objective is conditioned on the choice of the
correct discriminant functions. Anyway, due to their function approximation
capabilities, NNs with the proper number of units are potentially able to converge to
the true minimum Bayes risk [3]. In the present setup, the Bit Error Rate (BER), which is
the commonly adopted performance index in a  telecommunication system, is a
measure of the miss-classificaton probability.
The DL has been already adopted in a practical recurrent neural equalizer [4]. The
present architecture is much simpler than the fully recurrent architecture presented in
[4], shares the same (or better) high adaptation speed (50-200 samples), but has better
performance in terms of BER, expecially in the high-SNR region (10 dB or more) and
with non-linear channels.

3.1 Simulation results

The proposed architecture was compared to a traditional DFE, enhanced by the use of
the classical RLS adaptation algorithm in order to provide a fair comparison basis with
the BRLS in terms of convergence rates and steady-state parameter misadjustment.
The performance benchmark for BER was represented by a Viterbi decoder of depth
five [1], which assumed the exact a priori knowledge of the channel model. The signal
modulation was BPSK, and real arithmetic was employed throughout simulations.
It is worth to point out that practical performance of Viterbi demodulators can be
significantly worse than in simulated environments, since the channel estimate is
usually provided through only the few symbols of the preamble.
Several channels and architecture sizes were considered. Here we describe results
obtained in two typical non-minimum phase and non-linear channels. For each
channel, the length m of the input TDL, the length n of the feedback TDL and the
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decision delay d [1] were selected according to the rules described in [3], and used for
both the neural (NDFE) and the conventional DFE.
The NDFE had three input neurons and two output units, all featuring an hyperbolic
tangent activaction function. Training was performed on 20,000 samples for all
architectures, in order to ensure a steady-state performance index. After the training
phase, the BER was computed by presenting new sequences of samples and
averaging the results.
a) Linear non-minimum phase channel. Non-minimum phase channels are known to
be difficult to equalize [1]. In this experiment we considered the non-minimum phase
channel having the following transfer function in the z domain:

1 1 2( ) 0.3482 0.8704 0.3482H z z z− − −= + ⋅ + ⋅ (3)

The equalizer parameters were d=3, m=4, and n=2. Results in terms of BER versus SNR
are summarized in fig. 3. The NDFE with DL outperforms the DFE in the high SNR
region (SNR>14dB), which is the typical operating range of digital transmission
systems.
b) Non-linear channel. Non-linear channels are met frequently in practice; for example,
non-linearities can arise due to saturation phenomena of the amplifiers in the
transmitter. Since usually Viterbi decoders assume a linear channel, a mismatching
occurs on the symbol mapping in the presence of non-linearities. Furthermore, the
identification of a non-liner channel is not a trivial task with the few samples typically
available for training and synchronization. The resulting channel misadjustment can
lead to a higher BER in both linear and non-linear environments. The proposed NDFE
has, instead, a natural capability to cope with non-linearities.
In this second experiment we considered a simple non-linear channel, whose time
difference equations are:

( ) 0.3482 ( ) 0.8704 ( 1) 0.3482 ( 2)
( ) ( ) [1 0.2 ( )]

v k s k s k s k
y k v k v k

= ⋅ + ⋅ − + ⋅ −
= ⋅ + ⋅

(4)

All the equalizer parameters were the same as in the previous experiment. Results are
shown in fig. 4. In this case the performance improvement begins at SNR=8 dB.
Moreover, the Viterbi solution using the MSE gives a worse performance with respect
to both DFEs.

4. Neural Sequence Detector (NSD)

The basic structure of the Neural Sequence Detector is the same of fig. 1, where the
decision is made on the output pattern by a soft Viterbi decoding. At each time step,
the algorithm minimizes the Mean Square Error (MSE) between the target (preamble
sequence) and the detected outputs, and maximizes at the same time the Euclidean
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distance from the output sequence to all possible wrong codewords. The cost
functional can be expressed as:

1,

1
( )

1

N

i i j
j j i

E t MSE MSE
N = ≠

= − +
− ∑ (5)

where MSEi and MSEj are respectively the output MSE with respect to the correct
target sequence i and the generic (wrong) sequence j. This choice of the cost
functional extends the concept of Discriminative Learning (DL) to a multidimensional
output pattern [7]. The BRLS algorithm maximizes the cost (5) with respect to the
network weights, giving superlinear and robust convergence [6]. In order to keep the
functional E(ti) bounded, the non-linear activation functions placed at the outputs of
the neural network must also be bounded (e.g. sigmoids) [5][8].

4.1 Decoding phase

In the decision phase a Viterbi-like decision criterion is implemented in the following
way. At each time step, the network output pattern should be equal to the true
(transmitted) sequence. On the basis of this argument, the actual network output is
compared with a target which is dinamically formed and stored in the feedback
register: the oldest target symbol exits the register and constitutes the actual detected
symbol, while the remaining components are time-shifted. A new symbol is appended
to the target; for all possible symbol choices, the output MSE is computed and ranked
in a nonincreasing manner. The P targets with the lowest MSE are the survivors that
are retained for the subsequent step and generate a trellis [1]. The best matching
target is used for the optional weight tracking, performed by eqn. (5). In the steady
state, with P symbols, L outputs and S survivors, P ¥ S L-dimensional targets are
formed at each time instant.

4.2 Experimental results

The proposed equalizer structure has been implemented using either a feedforward or
a fully recurrent (Elman-type architecture [8]) neural network, and compared to the
Viterbi algorithm (which constitutes the benchmark) in different environments. It is
understood that neural architectures might exhibit some advantages when the noise is
not Gaussian, the channel is non-linear, and co-channel interference is present. Each
neural network had five input, eight hidden (or recurrent) and five output neurons.
These architectures were found to be optimal for the channels considered. The
modulation was BPSK [1].
The equation of the first test channel was:

( ) -0.2052 ( )-0.5131 ( 1) 0.7183 ( 2)
0.3695 ( 3) 0.2052 ( 4) ( )

u n x n x n x n
x n x n n

= ⋅ ⋅ − + ⋅ − +
+ ⋅ − + ⋅ − + η

(6)
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where x(n) is the transmitted symbol sequence, u(n) is the received sequence and η(n)
is the white additive noise. This is a typical non-minimum phase channel. Fig. 5
summarizes the BER obtained for this channel in the presence of Gaussian noise. Fig. 6
shows the results when the noise belongs to a mixture of a Gaussian (60%) and a
Laplacian (40%) distribution.
The second channel was non-linear; its equations were:

[ ]

( ) -0.2052 ( )-0.5131 ( 1) 0.7183 ( 2)

0.3695 ( 3) 0.2052 ( 4)

( ) ( ) 1 0.2 ( ) ( )

w n x n x n x n

x n x n

u n w n w n n

= ⋅ ⋅ − + ⋅ − +

+ ⋅ − + ⋅ −

= ⋅ + + η

(7)

Fig. 7 shows the results obtained in this case. In Figs. 5-7, cross-marks (x) are referred
to the feedforward network, circles (o) indicate the recurrent network and stars (*) are
used for the Viterbi equalizer.
It is important to remark the Viterbi decoder assumes the perfect knowledge of the
channel, even in the non-linear case, while neural equalizers must estimate the
channel. Anyway, the performance of the Viterbi algorithm are only slightly better, in
the SNR range typical of cellular telephony.
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Fig. 3: Non-minimum phase
channel: BER vs. SNR for DFE,
NDFE and Viterbi
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Fig. 4: Non-linear channel: BER
vs. SNR for DFE, NDFE and
Viterbi

8 9 10 11 12 13 14
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR (dB)

B
E

R

Linear channel

Fig. 5: NSDs and Viterbi
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Fig. 6: NSDs and Viterbi
equalizer, non-minimum phase
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Fig. 7: NSDs and Viterbi
equalizer, non-linear channel
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