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Abstract: The existing independent component neural netw orks (ICNNs) in
the literature need same number of output neurons as the input nodes to achieve
independence among output activations. We present a tec hnique to learn the
undercomplete ICNNs to produce an output with an low er dimension than the
input by using joint entropy of a multidimensionalGaussian to approximate the
mutual entrop y of the output. Our approach is not restricted by the squared
Jacobian matrix of outputs with respect to the inputs, and gives a general rule
and some criteria to extract both super- and sub-Gaussianly distributed signals
and remove the Gaussian distributed noise. Simulation results with simulated
signals and audio signals are provided.

Keywords: Independent component analysis, non-complete independent
component analysis, mutual independence, blind signal processing, stabilit y
analysis.

1. Introduction

Independent Component Analysis (ICA) transforms a multiv ariate random sig-
nal in to components that are mutually independent in complete statistical
sense. Recently researc hersproposed many neural netw orklearning mecha-
nisms to perform ICA based maximum entrop y [1], Kullback-Leibler divergence
minimization [2] and maximum likelihood [3]. How ev er, most researches only
considered to extract the full space of independent components, or the case
where the number of net w ork outputs(M) equaled the number of input sig-
nals (N). Such netw orks (M = N) are said to perform complete ICA, how ever,
M 6= N is the general case in practice. F or instance, the cocktail-party problem
tries to reco verM individual speech voices from N(6=M) mixture signals from
microphones. When we have more input signals or mixtures than the actual
sources tobe extracted then ICA is said tobe undercomplete (M < N), e.g.
functional brain imaging is a good application that a large number of signals
are accumulated from the brain where only a few signals come from activated
brain voxels [4]. ICA is said to be over completewhen the observed signals are
less than the actual sources (N < M).
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This paper presents a gradient approach to undercomplete independent
component neural net work to extract independent components from signals
with certain distribution while removing noises in the undercomplete ICA cases.
Our method forms the contrast function based on component mutual infor-
mation (CMI) betw eenjoin t entropy and product of marginal entropies. By
minimizing the component mutual information, we can �nd the linear demix-
ing matrix for signal separation. The criteria for optimal learning rule and the
algorithm's stability and convergence are discussed. All of Gaussian, sub- and
super-Gaussian distributed signals can be estimated by our approach. Exper-
iments show the applications of less dimensional signal separation from large
amount data of observed signal and noise cancellation. We also state the reason
of inapplicability of our approach to overcomplete ICA.

2. Problem and Basic Techniques

Let the time varying input signal be x = (x1; x2; : : : ; xN )
T and the inter-

ested signal consisting of independent components (ICs) or variables be c =
(c1; c2; : : : ; cM )T, and generally N 6= M . The signal x is considered to be a
linear mixture of independent components c:

x = Ac (1)

where A is an N �M mixing matrix.
The goal of general ICA is to obtain a linear K�N demixing matrixW to

reco ver theindependent components c or part of the in terested components,
i.e. K � M , with a minimal knowledge of A and c. How ever, the exact
components c are indeterminant because of possible permutation and dilation.
Nevertheless, the source signals are identi�able in this sense [5].

A single-layer ICNN is de�ned with K neurons and N input nodes. The
w eigh t matrix of thenet work is denoted W = fwijgK�N. K is generally not
equal to N . The netw ork outputu to represent the source components that
are to be extracted is given by

u =Wx (2)

Our algorithm requires a preliminary sphering or whitening of the input x.
Whitening transforms the original observed v ariablesv to signal x such that
the correlation matrix of x becomes the iden tity matrix:EfxxTg = I. This
transform can always be done using any well-known PCA technique.

3. General Learning Algorithm

The contrast function, component mutual information (CMI) between the out-
put and its components, is de�ned in the sense of random variable's entropy.

CMI =
XK

i=1
H(ui)�H(u) (3)

where H(ui) is the marginal entrop y of component ui and H(u) is the output
joint entrop y.CMI has non-negative value and equals to zero when components
are completely independent.
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The joint entrop y calculation is not diÆcult under the conventional ICA in
the case of K = N [6]. But the simple linear relationship betw een the densities
of net w ork's input and output is not valid any more under the general case of
K 6= N . As we have some minimal knowledge about the components needed to
be recovered, it is possible to have both super-Gaussian and sub-Gaussian dis-
tributed independent components appearing at the netw ork output. Because
in practice the joint statistics of uniting all output signals have characteristics
close to Gaussian distribution, we can approximate that the joint output dis-
tribution is a multidimensional Gaussian. Then entrop yH(u) is approximated
as

H(u) � K(1 + log 2�)=2 + log(jCov(u)j)=2 (4)

where j � j indicates the determinant of the matrix and Cov(u) = EfuuTg =
WW

T, since the input variable x is preprocessed by whitening.
With multiv ariateGaussian assumption of joint distribution, CMI with

respect to demixing matrix W can be approximated as:

CMI(W) � �
1

2
log(jWW

Tj)�
XK

i=1
Eflog pui

(ui)g (5)

By using the gradient descent approach to minimize CMI and replacing
the expectation values by their instantaneous values, w eha vethe stochastic
gradient descent algorithm:

�W = �f(W+)T ��(u)xTg (6)

where W+ is the pseudo-inverse matrix ofW, equals to WT(WW
T)�1 when

W's rank is K and

�i(ui) = �p0i(ui)=pi(ui) = �(@pi(ui)=@ui)=pi(ui): (7)

The learning rule (6) can generally yield a correct solution W, and hence
theoretically equation (7) can work on any source distribution. Nevertheless,
this c hoice bears some implementation diÆculty because pi(ui) is not kno wn
in advance.

4. Performance Analysis

In our approach, w econsider a family of densit yfunctions with exponential
pow er, which is generally given as

pi(ui) = � exp(�juij
) (8)

where � and � are constants to ensure
R
pi(ui)dui = 1 and  is a positiv e

parameter. A super-Gaussian densit yof positiv ekurtosis is obtained in the
range of 0 <  < 2 whereas  = 2 giv es the Gaussian distribution. A sub-
Gaussian density of negative kurtosis is obtained for  > 2. F rom equation (7),
the nonlinear function becomes

�i(ui) = ��juij
�1 (9)
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The above equation implies that the nonlinear function �i(ui) should grow
slower than linearly to extract super-Gaussian components and the function
gro w faster than linearly to extract sub-Gaussian components. With certain
nonlinear function by �xing � and , the netw ork tends to �nd the components
with closest densit yfunctions to the nonlinear function's derivation. Here,
several rules are proposed for selecting the nonlinear function �i(ui):

1. �i(ui) is an odd monotonic increasing function. It should have equivalent
order of ui within range of (0; 1) to extract super-Gaussian sources, and
the order greater than 1 for sub-Gaussian sources.

2. �i(ui) can loosely match with the density function in the same category,
e.g. sub-Gaussian or super-Gaussian, to well separate the components.

3. F or computational simplicity, the function should be chosen to compute
fast, e.g. polynomial functions tend to be faster than hyperbolic tangent.

4. Because any ordinary method of optimization tends to �rst �nd maxima
that have large basins of attraction, the components with density closest
matching to �(u) hold the global minimum of CMI. The measure of
closeness gives the order of components to be extracted. The algorithm
also converges if it is initialized at a nearby region of one local minimum
for separation solution.

5. The sign value of component's kurtosis can be the way to determine the
output's density type as super- or sub-Gaussian.

If row and column dimensions of demixing matrix W are equal, K = N ,
i.e. complete ICA case, our algorithm from above discussion can produce the
algorithms same as existing learning rules with certain nonlinear functions given
as odd sigmoidal function by infomax method [1] and 11th-order polynomial
function by minimum mutual information approach [2] and so on. Here, w e
choose the follo wing nonlinear function for super-Gaussian and sub-Gaussian
class components:

�super(ui) = tanh(aui); �sub(ui) = bu3i : (10)

where a and b are the parameters to choose the suitable shape of distribution.
Essentially , the demixing matrix W learned from the above algorithm is

the left pseudo-inverse matrix ofA with full column rank ofM , which matches
the case of complete and undercomplete ICA. For full row rank mixing matrix
of overcomplete ICA, its left generalized inverse matrix is ambiguous, which
is not unique like its righ t pseudo-inverse matrix. Therefore, according to the
theory of matrices, our approach is not suitable for overcomplete ICA.

The stability of our learning algorithm is another important role to ensure
the algorithm successful. The equilibrium point of our algorithm is

(W+)T �E[�(u)xT] = 0 (11)

By linearizing equation (6) at this equilibrium point, w eha vethe Hes-
sian matrix of component mutual information function 52

CMI(W). This
shows that, only when the Hessian matrix is positive de�nite at the minimum
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point of con trast function, or all the eigen values of theoperator @((W+)T �
E[�(u)xT])=@W ha venegative real parts, the equilibrium is asymptotically
stable. It can be pro ven that the con vergenceis stable if the neuron with
super-Gaussian nonlinear function �i(ui) is corresponding to extract super-
Gaussianly distributed signal and same condition is held for sub-Gaussianly
signal in our algorithm.

5. Experiments and Results
The algorithms were simulated in MATLAB version 5. All signals are prepro-
cessed by a whitening process to have zero mean and uniform variance. The
performances of the netw orkseparating the signals into ICs were measured
by an individual performance index (IPI) of the permutation error �i for ith
output:

�i = (
Xn

j=1

jpij j

maxkjpikj
)� 1 (12)

where pij are elements of the permutation matrix P = WA. IPI is close to
zero when the corresponding output is close to an independent component.

Four independent random signals distributed in tw osub- and tw osuper-
Gaussian manner were simulated. Their statistical con�gurations are similar
as the simulation experiments in [6]. These source signals c w ere mixed with a
random matrix to derive inputs to the netw ork. The experiments trained the
2�4 matrix using a nonlinear function for super-Gaussianly signal in one neuron
and sub-Gaussianly in another neuron. With the learnt net w ork weight matrix,
one super-Gaussian and another sub-Gaussian independent components were
extracted at the net work output. And the signal with the densit yfunction
closer to nonlinear function �i is the one to be extracted at the output. The
resulted output w aveforms and IPI curves are shown in Figure 1(a) and (b)
respectively. The super-Gaussian output has SNR 31.82dB and sub-Gaussian
signal has 25.92dB. As seen, the extracted components were v ery close to the
desired source signals.

Another experiment simulated that our neural netw ork has the ability of the
white noise cancellation for noisy speech signals. The simulation had original
components of one real speech signal and a random generated Gaussian noise
signal with normal distribution. Two components w ere mixed with a random
matrix to derive input mixtures to the network. A tw o-to-one demixing matrix
w as trained by self-selecting the nonlinear function betw een sub-Gaussian and
super-Gaussian based on the sign of the output signal's kurtosis. The result
gave an output reco vering theoriginal speech signal with high SNR value of
38.75dB at the output neuron. It perfectly removed the white noise totally
which was distorting the speec h signal at the input of the neural network.
Figure 1(c) and (d) illustrate the recovered speech signal waveform and the IPI
curve respectively.

6. Conclusion
The above experiments sho w that our algorithm is successful in undercom-
plete ICA signal separation which is more generic than conven tional ICA. Our
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Figure 1: (a) The output waveforms of one super-Gaussianly and another sub-
Gaussianly signal from the separation. (b) The corresponding individual per-
formance indices to these tw o outputs.(c) The output waveforms of recovered
speec h signal.(d) The netw ork performance index for removing noise.

algorithm can recover both super-Gaussian and sub-Gaussian distributed sig-
nals from mixtures accurately. We also gave some general rules to choose the
nonlinear functions in our algorithm to loosely match the distribution of com-
ponents to be extracted. The noise can be discarded at the net w ork output
because usually the noise signal has Gaussian distribution which is not able to
converge in our algorithm, because activation functions correspond to sub- and
super-Gaussian signals.

The netw ork output joint entropy can be further studied with more precise
approximation. The stabilit y and convergence of our algorithm need to be
studied later. The learning of nonlinear function's parameters to match with
the signal characteristics is also an interesting future research direction.
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