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Abstract. Support V ectorMachines choose the hypothesis corre-
sponding to the centre of the largest hypersphere that can be inscribed
in version space. If version space is elongated or irregularly shaped a
potentially superior approach is take into account the whole of version
space. We propose to construct the Bayes point whic h is approximated
by the centre of mass. Our implementation of a Bayes Point Machine

(BPM) uses an ergodic billiard to estimate this point in the k ernel space.
We show that BPMs outperform hard margin Support Vector Machines
(SVMs) on real world datasets. We introduce a technique that allows
the BPM to construct hypotheses with non{zero training error similar
to soft margin SVMs with quadratic penelisation of the margin slacks.
An experimental study reveals that with decreasing penelisation of train-
ing error the improvement of BPMs over SVMs decays, a �nding that is
explained by geometrical considerations.

1. Introduction

Recently there has been considerable interest in the theory and application of
Support V ectorMachines (SVMs) [3]. SVMs construct the hypothesis using
the centre of the largest inscribable hypersphere in version space, i.e. the space
of all h ypotheses consistent with the training data. Boundaries of version space
tangentially contacting the hypersphere correspond to supp ort ve ctors.

If version space is elongated a potentially superior approach is to take into
account the exact geometrical structure of version space for de�ning the hy-
pothesis. In this paper we will consider learning machines based on �nding the
midpoint of the region of in tersection of all hyperplanes which divide version
space into tw ohalves of equal volume: the Bayes point. The approach can
be motivated from a Bayesian perspective: if we consider a new test point x,
the set of Bayes{optimal decision functions is given by those weight vectors w
whose posterior on a binary decision at x is greater than 0:5. As in general
the in tersection of Bayes{optimal decision functions for allx is empty we could
approximate it by the function wBa yes closest to the Bayes{optimal decision
ha ving knowledge of the input distribution. This hypothesis is called the Bayes
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point. It w asshown elsewhere [4] that, assuming a spherical input distribu-
tion, wBa yes con verges to the centre of mass of version space. In this paper we
will sketch an algorithmic approach for estimating the Bayes point in kernel
space in Section 2. The full description of this algorithm has been presented
in a technical report [1]. We extend this approach to handling admission of
training errors in Section 3 and experimentally compare its performance to soft
margin SVMs.

2. Estimating the Bayes Point in Kernel Space

F rom the theory of reproducing kernel Hilbert spaces it is kno wnthat it is
possible to perform a mapping � : X 7! F from input space X to a potentially
high-dimensional Hilbert spaceF called feature spacesuc h that a linear function
f can be expressed as an inner product betw eenthe mapped point x and a
vectorw 2 F in terms of a kernel function k : X �X 7! R, i.e.

f(x) = hw;�(x)iF =

mX
i=1

�ik(xi;x) w 2 F ; � 2 Rm : (1)

Since a multiplication of w by a positiv enumber w ouldnot change its clas-
si�cation w eassume kwkF = 1. Suppose w eare giv en a training set Z =
f(xi; yi)g

m
i=1 2 (X � f�1;+1g)

m then version space is de�ned by:

V (Z) =

8<
:w

������ 8(xi; yi) 2 Z : yihw;�(xi)iF = yi

mX
j=1

�jk(xj ;xi) > 0

9=
; : (2)

We no w outline an algorithm for estimating the Bayes point by the centre
of mass in version space[1]. This approach develops a method presented by
P alRuj�an[2]. In order to obtain the cen tre of mass of V (Z) w euniformly
generated random points (hyperplanes in input space) and average over them.
Since it is diÆcult to generate hyperplanes consistent with Z we average over
the trajectory of a ball which is placed inside V (Z) and bounced like a billiard
ball. The boundaries constraining the billiard are giv en by the hyperplanes
with normal vectors yi�(xi). This process con vergesto the cen tre of mass
under the assumption of ergodicity with respect to the uniform distribution in
V (Z).

Based on the fact that w epla y billiards only in V (Z) eac h position b,
direction vector v of the ball and estimate wn of the centre of mass of V (Z)
can be expressed as linear combinations of the mapped input points, i.e. wn =Pm

i=1 �i�(xi), v =
Pm

i=1 �i�(xi), and b =
Pm

i=1 i�(xi), where �, � and 
are real vectors withm components and fully determine the state of the billiard.
Using this notation inner products and norms in F become, e.g.

hb;viF =
mX

i;j=1

i�jk(xi;xj) kbk2F = hb;biF =
mX

i;j=1

ijk(xi;xj) ; (3)
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and similarly for v and wn. Before generating a billiard trajectory in version
space we �rst run an algorithm to �nd an initial starting point b0 inside version
space. Then the algorithm can be subdivided into three steps (for a detailed
deriv ation see [1]):
1. Determine the closest boundary starting from current position b in direction
v. Since it is computationally very demanding to calculate the ight time of the
ball on geodesics of the hypersphere we make use of the fact that the shortest
distance in Euclidean space is also the shortest distance on the hypersphere.
Thus, we have for the ight time �i of the ball at position b in direction v to
the h yperplane with normal vector yi�(xi)

�i = �
yihb;�(xi)iF
yihv;�(xi)iF

def
= �

di

�i
: (4)

After computing all m ight times, we look for the smallest positive, i.e.

c = argmini:�i>0�i :

If �c !1 w e randomly generate a direction vector v pointing towards version
space. Assuming that the last bounce took place at the hyperplane having
normal yl�(xl) this can easily be chec ked by

ylhv;�(xl)iF > 0 : (5)

2. Update the ball's position b0 =
Pm

i=1 
0
i�(xi) and the new direction vector

v
0 =
Pm

i=1 �
0
i�(xi) according to 

0
i = i+�c�i and �0i = �i�2Æic�iyi. T o satisfy

the uniqueness constraint the position b
0 and the direction vector v0 need to

be normalised. This can easily be achieved using equation (3).
3. Update the cen treof mass wn of the trajectory by the new line segment
from b to b0 calculated on the hypersphere. Since the solution w1 exists on
the h ypersphere we cannot simply update the centre of mass using a weigh ted
vector addition. Having the midpoint

m =
b+ b

0

kb+ b0kF
=

mX
i=1

�i�(xi) ; �i =
i + 0i
kb+ b0kF

;

w e use the following update formula

�0i = %1

�
wn;m;

�n

�n + �n

�
�i + %2

�
wn;m;

�n

�n + �n

�
�i ;

%1(wn;m; �) = �

s
�
�2 � �2hwn;miF � 2

hwn;miF + 1
;

%2(wn;m; �) = �%1(wn;m; �)hwn;miF � [�2(1� hwn;miF)� 1] ;

where we choose the � sign such that %2 is positive. Here we have used �n =
kb� b0kF for the length of the trajectory at the n{th step and �n =

Pn

i=1 �i
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Figure 1: Decision boundaries for a 2D toy problem of a SVM (left) and BPM (right)
using hard margins (� = 0) and RBF kernels k(x;x0) = exp(�kx�x

0k2=�2) (� = 1).

for the accumulated length of the trajectory up to the n{th step. This rather
arcane de�nition implements a weighted addition of wn and m such that � is
the fraction between the current and the total chord length. The weighting
factor %2 of the new part of the trajectory decreases as the length of the total
trajectory increases. Consequently a good stopping criterion is to terminate
the algorithm when this weigh ting factor falls below a prespeci�ed tolerance.
Given nmax bounces the complexity of the algorithm is O(m2nmax). With
BPMs, the appealing SVM feature of sparseness of the solution in the �'s is
lost, a problem that can be overcome by reduced rank approximations.

F or illustration of the e�ective di�erence betw een SVM and BPM solutions
consider Figure 1: the BPM trades margin for smoothness. To investigate the
performance on real world datasets we compared BPMs constructed using the
abo ve algorithm against SVMs with hard margins.We studied performance on
�v estandard benchmarking datasets from the UCI Repository1, and banana

and waveform, tw otoy datasets. In eac h case the data w as randomlyparti-
tioned in to 100 training and test sets in the ratio 60%:40%. The means and
standard deviations of the average test set errors are presented as percentages
in the columns headed SVM (hard margin) and BPM (� = 0) in Table 1. The
BPM outperforms SVMs on almost all datasets at a statistically signi�cant
level.

3. Bayes Point Machines with Soft Boundaries

To allow for training errors we will introduce the following version space con-
ditions in place of those in (2):

yihw;�(xi)iF = yi

mX
j=1

�jk(xj ;xi) � ��yi�ik(xi;xi) ; (6)

1Publically accessible at http://www.ics.uci.edu/ mlearn/MLSummary.html.

 D-Facto public., ISBN 2-930307-00-5, pp. 49-54B
orks

,
ES tw

r 0
A Ne
u 0

N l 
g 0

N ra
e  2

'2 Neu
s l

000 l 
 i

 icia
( r

p tif
B p

ro Ar
e A

ce on 
l  

edi m 
g 28

ngs iu
i -

 - pos
u 6

 E ym
m 2

uro  S
)  

pean
,



SVM (hard margin) BPM (hard boundary) � p-value

Heart 25.4�0.40 22.8�0.34 10.0 1.00

Th yroid 5.3�0.24 4.4�0.21 3.00 1.00

Diabetes 33.1�0.24 32.0�0.25 5.0 1.00

Waveform 13.0�0.10 12.1�0.09 20.0 1.00

Banana 16.2�0.15 15.1�0.14 0.5 1.00

Sonar 15.4�0.37 15.9�0.38 1.0 0.01

Ionosphere 11.9�0.25 11.5�0.25 1.5 0.99

T able 1: Experimental results on seven benchmark datasets. Sho wn are mean and
standard deviation obtained on 100 di�erent runs. The �nal column gives the p-values
of a paired t-test indicating the improvement is statistically signi�cant.

where � � 0 is an adjustable parameter. Equation (6) can be in terpreted as
allo wing the ball to penetrate walls. Since the decision function based on (1)
is invariant under any positiv e rescaling ofthe �'s it is necessary to ha ve an
�j on the right hand side to make � scale{invariant as well. This formulation
giv es a simple modi�cation of the algorithm described in Section 2. T o see this
w e note that equation (6) can be rewritten as

yi

2
4 mX
j=1

�j(1 + �Æij)k(xj ;xi)

3
5 � 0 ; (7)

Hence we can use the above algorithm but with an additive correction to the
diagonal terms of the kernel matrix computed at the start of the algorithm
k(xi;xi)  k(xi;xi) + �. This additive correction to the kernel diagonals is
similar to the L2 error norm used to introduce a soft margin during training
of SVMs. Another insight into the introduction of soft boundaries comes from
noting that the distance betw een t w o normalised points �(xi) and �(xj) can
be written

jj�(xi)� �(xj)jj
2 = 2(1 + �� k(xi;xj)) :

Thus, if w eadd � to the diagonal elements of the kernel matrix, the points
become equidistant for � ! 1. This gives the resulting version space a more
isotropic shape. Hence, the centre of the largest inscribable sphere (SVM so-
lution) tends tow ards the centre of mass of version space.

In order to investigate the e�ect of � (soft boundaries) we trained a BPM
with soft boundaries and compared it to the results of training an SVM with
soft margin using the same kernel matrix (see equation (7)). In Figure 2 we
plotted the generalisation error as a function of �'s for a to y problem and the
heart dataset. We observe that the SVM with an L2 soft margin achieves
a minimum of the generalisation error which is close to, or just abo ve,the
minimum error which can be achiev edusing a BPM with positiv e�'s. This
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Figure 2: Generalisation error versus � for a to y problem using linear kernels
(left) and for the heart dataset using RBF kernels with � = 10:0 (right). The
error bars indicate one standard deviation of the estimated mean.

may not be too surprising taking the change of geometry into account. Thus
soft margin SVMs approximates BPMs with soft boundaries.

4. Discussion and Conclusion

Our results indicate that hard boundary BPMs have an edge over hard margin
SVMs for the type of data we investigated. We have introduced one mechanism
for admitting classi�ers of non{zero training error but w eexpect others are
possible based on more re�ned noise models not easily implementable in the
optimisation framework of SVMs. More importantly, theoretical results in the
P A C{Bayesian framework (see [1]) indicate that the observed superiority of
BPMs has a sound basis as measured by PAC type bounds on the generalisation
error.
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