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Abstract: Support V ectorMachines (SVMs) ha vebecome an increasingly
popular tool for machine learning tasks involving classi�cation, regression or
no velty detection. They exhibit good generalisation performance on many real-
life datasets and the approach is well-motivated theoretically. T raining involv es
optimisation of a convex cost function, there are relatively few free parameters
to adjust and the architecture does not have to be found by experimentation.
In this tutorial we survey methods for training SVMs including model selection
strategies for determining the free parameters and new techniques for active
selection of training examples.

1. Introduction.

Support Vector Machines (SVMs) have recently been successfully applied to a
number of applications ranging from particle identi�cation, face identi�cation
and text categorisation to engine knock detection, bioinformatics and database
marketing [9]. The approach is systematic and motivated by statistical learning
theory [26] and Bayesian arguments. The training task involv es optimisation
of a con vex costfunction: there are no false local minima to complicate the
learning process. The approach has many other bene�ts, for example, the
model constructed has an explicit dependence on the most informative patterns
in the data (the support vectors), hence interpretation is straightforward. In
this tutorial we introduce this subject with an emphasis on the issue of training
SVMs.
F rom the perspective of statistical learning theory the motivation for consider-
ing binary classi�er SVMs comes from theoretical bounds on the generalisation
error [26, 6]. Though we do not quote the relevan t theorem here we note that
it has t w o important features. Firstly , the upper bound on the generalization
error do not depend on the dimension of the space. Secondly, the error bound
is minimised by maximising the margin, , i.e. the minimal distance betw een
the hyperplane separating the tw oclasses and the closest datapoints to the
hyperplane (Figure 1).
Let us consider a binary classi�cation task with datapoints xi (i = 1; : : : ;m)
ha ving corresponding labelsyi = �1 and let the decision function be:

f(x) = sign (w � x+ b)
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Figure 1: The margin is the perpendicular distance between the separating
hyperplane and a hyperplane through the closest points (the support ve ctors).
x1 and x2 are examples of support vectors of opposite sign. The margin b andis
the region betw een the hyperplanes on both sides of the separating hyperplane.

If the dataset is separable then the data will be correctly classi�ed if yi(w �xi+
b) > 0 8i. Clearly this relation is invarian t undera positiv erescaling of the
argument inside the sign-function, hence we can de�ne a canonical hyperplane
suc h thatw �x+ b = 1 for the closest points on one side and w �x+ b = �1 for
the closest on the other. F or the separating hyperplane w �x+b = 0 the normal
vector is clearlyw= jjwjj2, and hence the margin is given b y the projection of
x1�x2 on to this v ector (see Figure 1).Since w �x1+ b = 1 and w �x2+ b = �1
this means the margin is  = 1= jjwjj

2
. T omaximise the margin the task is

therefore:

Minimise g(w) =
1

2
jjwjj

2

2

subject to the constraints:

yi (w � xi + b) � 1 8i

and the learning task can be reduced to minimisation of the primal Lagrangian:

L =
1

2
(w �w)�

mX
i=1

�i (yi(w � x+ b)� 1)

where �i are Lagrangian multipliers, hence �i � 0. Taking the derivativ es with
respect to b and w and resubstituting back in the primal gives the Wolfe dual
Lagrangian:

W (�) =

mX
i=1

�i �
1

2

mX
i;j=1

�i�jyiyj (xi � xj) (1)
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which must be maximised with respect to the �i subject to the constraint:

�i � 0

mX
i=1

�iyi = 0 (2)

In the dual lagrangian (1) we notice that the datapoints, xi; only appear inside
an inner product. T o get a potentially better representation of the data we can
map the datapoints in to an alternative space, generally called feature space (a
pre-Hilbert or inner product space) through a replacement:

xi � xj ! � (xi) � �(xj)

The functional form of the mapping �(xi) does not need to be known since
it is implicitly de�ned by the choice of kernel: K(xi;xj) = �(xi) � �(xj) or
inner product in Hilbert space. With a suitable choice of kernel the data can
become separable in feature space despite being non-separable in the original
input space. Thus, whereas data for n-parit y or the tw ospirals problem is
non-separable by a hyperplane in input space it can be separated in the feature
space de�ned by RBF kernels (giving an RBF-type network):

K(xi;xj) = e�jjxi�xj jj
2=2�2 (3)

Many other choices for the kernel are possible e.g.:

K(xi;xj) = (xi � xj + 1)d K(xi;xj) = tanh(�xi � xj + b) (4)

de�ning polynomial and feedforward neural net w orkclassi�ers. Indeed, the
class of mathematical objects which can be used as kernels is very general
and includes, for example, scores produced by dynamic alignment algorithms
[10, 27]. F or binary classi�cation withthe given choice of kernel the learning
task therefore involv es maximisation of the Lagrangian:

W (�) =
mX
i=1

�i �
1

2

mX
i;j=1

�i�jyiyjK(xi;xj) (5)

subject to constraints (2). After the optimal values of �i have been found the
decision function is based on the sign of:

f(z) =

mX
i=1

yi�iK(z;xi) + b (6)

Since the bias, b, does not feature in the abo vedual formulation it is found
from the primal constraints:

b = �
1

2

2
4 max
fijyi=�1g

0
@

mX
j2fSVg

yj�jK(xi;xj)

1
A+ min

fijyi=+1g

0
@

mX
j2fSVg

yj�jK(xi;xj)

1
A
3
5
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The con�dence of a classi�cation is directly related to the magnitude of f(z)
[19 ].When the maximal margin hyperplane is found in feature space, only those
points which lie closest to the hyperplane have�i > 0 and these points are the
supp ortvectors. All other points ha ve�i = 0. This means that the repre-
sen tation of hypothesis is solely giv en by those points which are closest to
the hyperplane and they are the most informative patterns in the data. This
framework can be elaborated in many ways, for example:

Multiclass Classi�cation. A number of schemes for multiclass classi�cation
ha ve been outlined[15, 28]. One of the simplest schemes is to use a directed
acyclic graph (Figure 2 (left)) with the learning task reduced to binary classi-
�cation at each node [7].

Soft margins and allowing for training errors. An SVM can �t noise
present in the training data leading to poor generalisation. The e�ect of outliers
and noise can be reduced by introducing a soft margin to remove the e�ect of
outliers [4]. Currently two schemes are possible. In the �rst (L1 error norm)
the learning task is the same as in (2,5) except for the introduction of the box
constraint:

0 � �i � C (7)

while in the second (L2 error norm) the learning task is the same as (2,5)
except for addition of a small positive constant, �, to the leading diagonal of
the k ernel matrix:

K(xi;xi) K(xi;xi) + � (8)

C and � control the trade-o� betw een training error and generalisation ability
and are chosen by means of a validation set.

Novelty Detection. For many real-world problems the task is not to classify
but to detect novel or abnormal instances. Novelty detection can be performed
by modelling the support of a distribution (i.e. �nding a function which is 1
where most data lies and 0 elsewhere).One approach [23, 1, 25 ] is to �nd a
sphere with a minimal radius R and centre a which contains most of the data:
no vel test points are those which lie outside the boundary of the sphere. During
the training process the e�ect of outliers is reduced by using slack variables �i
to allo w for some datapoints outside the sphere. Thus the task is to minimise
the v olume of the sphere and number of datapoints outside i.e. R2 + 1

�m

P
i �i

where � con trols the tradeo� betw een the tw o terms.F or the c hosen kernel the
learning task then reduces to maximisation of:

W (�) =

mX
i=1

�iK(xi;xi)�

mX
i;j=1

�i�jK(xi;xj)

with respect to �i and subject to
Pm

i=1 �i = 1 and 0 � �i � 1=�m. A test
point z is no vel if:
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K(z; z)� 2

mX
i=1

�iK(z;xi) +

mX
i;j=1

�i�jK(xi;xj) � R2 (9)

R2 is found by using an equality in (9) for a training example for which �i is
not at a bound i.e. 0 < �i < 1=�m. This approach has also been developed
by Sch�olkopf et al. [20 ] who give a di�erent QP formulation for estimating the
support and provide good experimental evidence in favour of this approach by
highlighting abnormal digits in the USPS handwritten character dataset.

Regression. Several approaches to regression [6, 26] are possible but, as for
classi�cation, the essen tial algorithmic task is to minimise a con vexfunction
to giv e a sparse solution.Thus, for example, for �-SV regression [25] we min-

imise jjwjj
2

2
; as before, to increase atness or penalise overcomplexity, and use

constraints yi � w � �(xi) � b � � and w � �(xi) + b � yi � � allowing for a
deviation � between even tual targetsyi and the function f(x) = w � �(x) + b,
modelling the data. The learning task can be reduced to the maximisation of
dual Lagrangians such as:

L = ��

mX
i=1

(�?i + �i) +

mX
i=1

yi (�
?
i � �i)�

1

2

mX
i;j=1

(�?i � �i)
�
�?j � �j

�
K (xi;xj)

subject to the constraint
Pm

j=1 �
?
j =

Pm
j=1 �j , for instance.

2. Algorithmic Approaches to Training SVMs

All these tasks involv e optimization of a quadratic Lagrangian and thus tech-
niques from quadratic programming are most applicable including quasi-Newton,
conjugate gradient and primal-dual interior point methods. Certain QP pack-
ages are readily applicable such as MINOS and LOQO. These methods can be
used to train an SVM rapidly but they have the disadvantage that the kernel
matrix is stored in memory. F or small datasets this is practical and QP rou-
tines are the best choice, but for larger datasets alternative techniques ha ve
to be used. These split into tw o categories: techniques in which kernel com-
ponents are ev aluated and discarded during learning andworking set methods
in which an evolving subset of data is used. F or the �rst category the most
ob vious approach is to sequentially update the �i and this is the approach used
by the Kernel Adatron (KA) algorithm [8]. F or binary classi�cation (with no
soft margin or bias) this is a simple gradient ascen t procedure on (5) in which
�i � 0 initially and the �i are subsequently sequentially updated using:

�i  �i� (�i) where �i = �i + �

0
@1� yi

mX
j=1

�jyjK(xi;xj)

1
A (10)
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and �(�) is the Heaviside step function. The optimal learning rate � can be
readily evaluated: � = 1=K(xi;xi) and a su�cient condition for convergence
is 0 < �K(xi;xi) < 2. With the decision function (6) this method is very easy
to implement and can give a quic kimpression of the performance of SVMs
on classi�cation tasks. It is equivalent to Hildreth's method in Optimisation
theory and can be generalised to the case of soft margins and inclusion of a
bias [14]. How ev er, it is not as fast as most QP routines, especially on small
datasets.

Chunking and Decomposition. Rather than sequentially updating the �i
the alternative is to update the �i in parallel but using only a subset or chunk
of data at each stage. Thus a QP routine is used to optimise the lagrangian on
an initial arbitrary subset of data. The support vectors found are retained and
all other datapoints (with �i = 0) discarded. A new working set of data is then
deriv ed from these support vectors and additional datapoints which maximally
violate the storage constraints. This chunking process is then iterated until
the margin is maximised. Of course, this procedure may still fail because the
dataset is too large or the hypothesis modelling the data is not sparse (most
of the �i are non-zero, say). In this case decomposition [17 ] methods provide a
better approach: these algorithms only use a �xed size subset of data with the
�i for the remainder kept �xed.

Decomposition and Sequential Minimal Optimisation (SMO). The
limiting case of decomposition is the Sequential Minimial Optimisation (SMO)
algorithm of Platt [18 ] in which only tw o�i are optimised at eac h iteration.
The smallest set of parameters which can be optimised with each iteration is
plainly tw o if the constraint

Pm
i=1 �iyi = 0 is to hold. Remarkably , if only tw o

parameters are optimised and the rest kept �xed then it is possible to derive
this analytical solution which can be executed using few numerical operations.
The method therefore consists of a heuristic step for �nding the best pair of
parameters to optimise and use of an analytical expression to ensure the la-
grangian increases monotonically. F or the hard margin case the latter is easy
to derive from the maximisation of �W with respect to the additive corrections
a; b in �i ! �i + a and �j ! �j + b, (i 6= j). F or theL1 soft margin care must
be tak en to avoid violation of the constraints (7) leading to bounds on these
corrections. The SMO algorithmhas been re�ned to improve speed [13] and
generalised to cover the above three tasks of classi�cation [18], regression [22]
and estimating densities [20 ]. Due to its decomposition of the learning task
and speed it is probably the method of choice for training SVMs.

Model Selection. Apart from the choice of kernel the other indeterminate
is the choice of the kernel parameter (e.g. � in (3)). The kernel parameter
can be found using cross-v alidation if su�cient data is available. How ever,
recen t model selection strategies can give a reasonable estimate for the kernel
parameter based on theoretical arguments without use of additional validation
data. As a �rst attempt we can use a theorem stating that the test error bound
(E) is reduced as the margin  is increased E = R2=2 where R is the radius of
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the smallest ball containing the training data (in general R can be found via a
QP task [1, 25]). A t the optimum of (3) it is possible to show that 2 = 1=

P
i �

0
i

(where �0i are the values of �i at the optimum). F or RBF kernels R ' 1 (the
data lie on the surface of hypersphere since �(x) � �(x) = K(x;x) = 1 from
(5)). Hence an estimate for � can be found by sequentially training SVMs
on the same dataset at successively larger values of �, evaluating E from the
�0i for eac h case and choosing that value of � for which E is minimised. This
method [5] will give a reasonable estimate if the data is spread evenly over the
surface of the hypersphere but it is poor if the data lie in a at ellipsoid, for
example, since the radius R w ould be inuenced by the largest deviations. More
re�ned estimates therefore take into account the distribution of the data. One
approach [3] is to simply rescale data in kernel space to compensate for uneven
distributions. This rescaling is achiev ed using the eigenvalues and eigenvectors
of the covariance matrixK(xi;xj). A more complex strategy along these lines
has also been proposed by Sc h�olkopf et al [21 ] which leads to an algorithm
which has performed well in practice for a small number of datasets.
The most economical w ayto use the training data is to use a leave-one-out
cross-v alidationprocedure. In this procedure, single elements from the data
set are removed, the SVM is trained on the remaining l� 1 elements and then
tested on the removed datapoint. Under the reasonable assumption that the set
of support vectors does not change it is possible to derive tigh t bounds on the
generalisation error. Two examples of these model selection rules are the span-
rule of Chapelle and Vapnik [3] and a rule proposed by Jaakolla and Haussler
[12 ]. Based on recent studies with a limited number of datasets, these model
selection strategies appear to work well. How ev er, a comparative study of these
di�erent techniques and their application to a wider range of real-life datasets
needs to be undertaken to establish if they are fully practical approaches.

Active Selection. So far w eha veconsidered learning strategies in which
data is acquired passively. How ev er,SVMs construct a hypothesis using a
subset of the data con taining the most informative patterns and thus they
are good candidates for active or selective sampling techniques which seek out
these patterns. Suppose the data is initially unlabeled, a good heuristic al-
gorithm would predominantly request the labels for those patterns which will
become support vectors: the labels are not required for patterns corresponding
to non-support vectors in the ev en tual hypothesis. Active selection would be
particularly important for practical situations in which the process of labelling
data is expensive or the dataset is large and unlabelled.
During the process of active selection the information gained from an example
depends both on the position (available information) and on its label (unavail-
able information before querying). Thus w emust follo w a heuristic strategy
to maximise the gain at each step. Firstly w e note(Figure 1) that querying
a point within the margin band always guarantees a gain whatever the label
of the point. We do not gain by querying a point outside the band unless the
current hypothesis predicts the label incorrectly. The best points to query are
indeed those points which are closest to the current hyperplane [2]. In tuitively
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this makes sense since these are most likely to be maximally ambiguous with
respect to the current hypothesis and hence the best candidates for ensuring
that the information receiv ed is maximised. Hence a good strategy [2] is to
start by requesting the labels for a small initial set of data and then succes-
sively querying the labels of points closest to the current hyperplane. Active
selection w orks bestif the hypothesis modelling the data is sparse i.e. there
are comparatively few support vectors to �nd (Figure 2(right)).
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Figure 2: Left: a multi-class classi�cation problem can be reduced to a series of
binary classi�cation tasks. Right: Generalisation error (y-axis) as a percent-
age versus number of patterns (x-axis) for random selection (top curve) and
activ e selection (bottom curve). Active selection outperforms random selection
especially when the hypothesis is sparse (for this dataset 28% of patterns were
support vectors).

3. Conclusion

Since the learning task involv esoptimisation of a quadratic function SVMs
pro vide a unique solution.The approach is general in that they can be applied
to a wide range of machine learning tasks (e.g. classi�cation, regression and
no velty detection) and can be used to generate many possible learning machine
architectures (RBF netw orks, feedforward neural netw orks) through the choice
of k ernel. Kernel substitution of the inner product is, indeed, a pow erful idea
separate from the concept of the margins and it can be used to de�ne many
other t ypes of learning machines [16, 11] distinct from SVMs. Above all SVMs
perform w ellin practice and consequently can be expected to dev elopas an
important tool for future applications of machine learning.
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