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Abstract. Liberalized competitive electrical energy markets need tools for real-
time stability assessment to link the technical with the market issues. Analytical
tools are available but time-consuming. Alternatively, knowledge based systems
speed up the stability assessment but most of them need extensive and assessed
training data. Unsupervised learning methods like Growing Neural Gas or Self-
Organizing Maps use training situations and the information of stability sepa-
rately. Doing this, the calculation of training data is less time consuming. The
use of the two methods within a fully automated tool for stability assessment is
discussed in this paper. Aspects of self-learning, quality of the assessment and
application to real power systems are considered.

1 Introduction

The operation of electrical transmission systems has to be more flexible under com-
petition. An optimal use of the operating fund 'network' can be achieved by running
the system closer to the stability limit. If economical requirements can be realized
technically, it is essential to check the distance to the stability limit. Particularly the
trading of transmission capacity for wheeling contracts needs a tool which checks the
stability of the system in real-time.

Conventional methods for stability assessment are well known [1]. The transient sta-
bility can be determined by dynamical simulations. Thermal and voltage limits result
from load flow calculations just as voltage stability bases on load flow equations. If
we assess all different kinds of stability we need a lot of computational effort. The
fastest applied analytical tools need more than about 30 minutes to determine the
stability of a large real transmission system. Simplifying assumptions are one possi-
bility to reduce the calculation time. This results in a loss of accuracy.

An alternative method is the mapping of preprocessed stability situations on a deci-
sion tree [2] or an artificial neural network [3]. Both divides or ranks input situations
in critical and non critical ones basing on relation characteristics of single input resp.
measurement values. The supervised learning methods are trained by the use of ex-
cessive training data sets. Decision trees are established for the classification of situa-
tions according to stable or unstable states. But the calculation of training data sets is
impractical for complex systems if the distance to the stability limit is the desired
output information and not only the statement of stable or unstable. To avoid this
problem, the following approach uses unsupervised learning methods like self-
organizing maps (SOM) [4] and growing neural gas (GNG) [5], which separate the
clustering of situations from the stability assessment of these situations. First results
using SOM for voltage stability are presented in [6][7][8]. The results of GNG are
presented here for the first time.
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Section 2 gives more details on conventional stability assessment. The advanced
methods using SOM and GNG are explained and validated in section 3. These meth-
ods are applied in a fully automated and autonomous component for stability assess-
ment in section 4.

2 Stability Assessment

Stability assessment is a broad field from classification of contingencies or situations
to the calculation of the distance to the stability limit in different senses of stability.
More than the classification of an actual situation in stable or unstable, the distance
towards the stability limit shows how robust the system is against changes of opera-
tion variables. The following describes a conventional way of security assessment for
the latter.

At first a load flow calculation determines if an actual base case fulfills the thermal
and voltage limits and if the system is voltage stable. A dynamic simulation assesses
the transient stability for several contingencies. Which contingencies have to be con-
sidered has to be determined separately. If we modify an operation variable of the
system stepwise, e.g. the load, we can execute this procedure until one of the limits is
reached. An optimization process for finding the limit can also be used. Fig. 1 shows
this with the two left bars (arrow a) for voltage stability and b) for transient stability).
Doing this, we need several load flow calculations and dynamical simulations.

base case

operation 
variable
e.g. load

(n-1)-cases for thermal and voltage 
limits and voltage stability

c)

a)

d) transient
stability

voltage 
stability

b)

Fig. 1: Different kinds of stability assessment

Additionally, selected (n-1)-cases have to be assessed (cases c)). The cases which
have to be considered can be selected according to the reliability. The situation with
the lowest stability defines the actual stability value (arrow d)). If the transient stabil-
ity limit is lower, b) is the actual value. This value can be expressed by using the unit
of the modified operation variable, e.g. MW for the load and will be called LI.

The described procedure or parts of it are applicable if a calculation time of at least 30
minutes is sufficient. For faster results we can reduce the calculation time by using
supervised learning methods like artificial neural networks or decision trees. For these
applications we need assessed training data for several situations. But using the sta-
bility assessment as mentioned above we can only pre-calculate four situations per
hour. The generation of several hundreds of situations is impractical. Therefore appli-
cations with supervised learning techniques are mostly restricted to the classification
in critical or non-critical situations [1][2][3].
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3 Advanced Methods for Stability Assessment

Unsupervised learning methods are used in order to guarantee a fast stability assess-
ment and a good representation of the state space. These methods find characteristic
groups and structures in the input data space. Measurement values which are available
in energy management systems represent the input space. After training, the stability
values (section 2) are calculated separately only for the limited number of groups
which have been determined by the unsupervised method. More than simple cluster-
ing methods, SOM and GNG represent the neighboring structure of the state space.
This information can be used for the arrangement of an actual state within all possible
situations. The following presents the principles and the application of SOM and
GNG. After that, their ability for stability assessment will be compared with the help
of a real power system example.

3.1 Self-Organizing Map

A SOM maps a high dimensional input space to a low dimensional output space [4].
Fig. 2 shows the structure of the SOM and the example of a two-dimensional section
of an input space x with two different clusters. The state information y of  the clusters
is colored pale and dark. The mapping of the SOM is done by feature vectors wj in a
way that their mean distances to the training vectors are minimizes. The feature vec-
tors are structured in a neighborhood grid. If the grid is two-dimensional, the SOM
offers the possibility for the visualization of its mapping [7][8].

x ( y )

xi

x1

xn

…
…

wjn

wji

wj1

W = [w1, ..., wj, ..., wm]

jx1

x2

Fig. 2: Structure of a SOM with the example of a two-dimensional section of a state space

3.2 Growing Neural Gas

The GNG was proposed by Fritzke [5]. Similar to the SOM, feature vectors wj are
distributed in an input space of training data. In contrast to the SOM, the neighboring
structure will also be defined in the training process. Connections cvw can be set or
deleted between states sv and sw and their feature vectors wv and ww. These connec-
tions represent the topological structure of the data space. Fig. 3 shows the structure
of the GNG and an example.

The advantage of growing neural gas is that the number of feature vectors and con-
nections is not fixed. They will be adapted in a continuous process. An adaptation to a
changing input data space can be realized easily. The principle accuracy of the input
space representation is greater because of a higher degree of freedom in comparison
to the SOM. On the other hand, the visualization of the results is not possible.
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x F

x2

x1

xn

S = {s1, s2, ... , sm}

C ⊂  S × S

sv,wv

W = {w1, w2, ... , wm}
          wj ∈  Rn

sw,ww

cvw=(sv, sw)…

( y )

x1

x2

x3

Fig. 3: Structure of the GNG and an example of connected feature vectors in an input space

3.3 Validation of Conformity

Both methods are tested for the validation of conformity for the stability assessment.
of a real German 134-bus power system with 21 generators at 8 generation busses.
The training data set is made of 3000 different state vectors representing normal and
contingency situations given by generator outages. The load level is distributed ran-
domly between an upper and a lower limit.  The generation pattern is defined ran-
domly in order to include all possible states of the power system. As the result of a
correlation analysis the active and reactive power of the generation units and the ac-
tive power of four selected loads are chosen as the 20 components of input vectors.
The values of the components are normalized within the interval [0,1], because this
guarantees equal weights for each component. After the training of SOM or GNG the
stability value for each feature vector is determined as the maximum possible load
increase LI.

The conformity of the mapping of pre-calculated values of LI to several test vectors is
shown in figure 4. In the left part the extreme range of the Error Eext defined as the
difference between the analytically calculated value LIcal and the value simulated by
SOM LISOM or GNG LIGNG is shown over the number of states of  SOM or GNG. Each
trained SOM shows different areas for different contingency cases. The error behaves
for both methods nearly similar.

For a special SOM with 18x18 states a more detailed look on its error is shown in the
right part of figure 4. The simulated value LISOM for 3000 test vectors is represented
ordered by magnitude. According to these values the analytically calculated values
LIcal and their range of deviation is given. The error E of the mapping is also drawn
separately. The error E increases according to LI. The extreme values with an error of
- 16.5 % and + 17.3 % are single test vectors which are represented not sufficiently.
Nearby the stability boundary resp. for small values of LI the accuracy of the mapping
is better, which is a desired result. Additionally, a frequency distribution of the error E
of this SOM is represented. The standard deviation of this frequency distribution is
σSOM = 3.2 % of LI.

All in all, a GNG is as good as a SOM for the assessment of stability. The degree of
freedom of the GNG for the representation of higher dimensions can not be trans-
posed into minor errors. But on the other hand, the two dimensional representation of
the SOM can be used for visualization of the system state. The maximum dimension
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of the SOM resp. the number of states is restricted by the time for the pre-calculation
of the stability information. For practical applications a SOM with 18x18 states is a
good compromise. The error of the mapping enables the operation of the power sys-
tem down to a minimum of LISOM = 5 %. In this case the calculated values would be
between LIcal  = 0 % and 10 %.
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Fig. 4: Mapping error of SOM and GNG

4 Automated and Autonomous Component

The use of the proposed methods in control centers has to be realized as a fully auto-
mated and autonomous component. Fig. 5 shows the structure of such a stability tool
according to necessary data.

base cases

topology / load data
•  planned modification 

of topology

•  load forecast
•  dynamic 
modeling

training scenarios
•  limits of power units

•  load variations
•  wheeling

measurement values
•  acutal power of units
•  transformer taps ...

training / adaptation

operation of stab. assessm.

security assessment

stability-
information

check-
information

stability assessment tool

Fig. 5: Structure and data access of  an automated component for stability assessment

The base cases are the normal operation situations of the system. Different planned
topologies can be considered. From these base cases training scenarios are derived
automatically by modifying load levels, generation pattern and wheeling. These
situations are clustered with the proposed unsupervised methods. After that, the sta-
bility of the finite number of received clusters of situations must be assessed using
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conventional methods. Now, the stability assessment tool is ready for operation with
incoming measurement values. The assessment time comes to only a few seconds. If
the assessment fails because of a situation outside the training data, a check informa-
tion warns. If the base cases change, the training scenarios are updated automatically
and the self-organizing map or the neural gas have to be adapted.

It has to be mentioned that the stability assessment is valid for first contingencies in
the sense of (n-1)-security only. Cascading contingencies are not covered, if they are
far outside the training data.

5 Conclusions

In order to enable a real-time stability assessment and to avoid a time consuming
generation of assessed training data the application of SOM and GNG is proposed.
With these methods the mapping of the training data structure and their assessment is
separated. The comparison of both methods shows that the error behaves nearly simi-
lar and the two dimensional mapping of the SOM is sufficient for this problem. Also
the SOM can be used for visualization. For a SOM with 18x18 states the standard
deviation of the error is 3.2 % and the accuracy allows an operation nearby the stabil-
ity boundary down to 5 % of LI.

To automate the proposed method for stability assessment a concept for a fully auto-
mated tool for control centers is discussed. The next step in this project is the assign-
ment of pre-calculated stabilizing measures to clusters of situations defined by the
SOM or the GNG.
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