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Abstract: A structural genetic algorithm is proposed to optimize the High Order
Neural Network (HONN) architecture and the parameters of activation function.
This work partitions the genes of chromosomes into control genes and
parameter genes in a hierarchical form. Control genes binary encoded in the
chromosome represent the activity of neurons, while real-valued parameter
genes, represent the parameters of the sigmoid activation function. To verify the
performance of our system, the HONN is used to approximate 2-D and 1-D
functions.

1. Introduction

The use of neural networks (NN) in a wide area of applications has been well
established. Predicting the optimal topology for a NN is a difficult task since
choosing the neural architecture reguires some a-priori knowledge and probably a lot
of trial and error runs. Moreover, the topology of the neural network directly affects
two of the most important factors of neural network training, generalization and
training time [1]. Until now methods to obtain the optimal topology of a neura
network generalized as:

a) Thetrial and error method where different topologies of neural networks are tested
and then the smallest network that best performs selected. b) Destructive and
constructive methods where initially assume alarge or small network respectively and
then prune off or add nodes or/and hidden layers [2, 3]. c) Using of natural selection
such genetic algorithms or genetic programming, which choose the best network from
a population of networks, considering as criterion a fitness value each chromosome
scored.

This paper proposes a structural genetic algorithm technique [4, 5] to optimize High
Order Neural Network (HONN) architecture [7] and the parameters of the activation
function. The genes of chromosome are classified into control genes and parameter
genes in a hierarchical form. Control genes binary encoded in the chromosome,
represent the activity of neurons, while parameter genes, real valued, represent the
parameters of the sigmoid activation function. The result of this method is that the
computational effort and the optimization of the HONN are improved.

The paper is organized as follows: in section 2 the theory of high order neural network
and of alearning algorithm are briefly reviewed. Section 3 introduces the structural
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genetic agorithm optimizing the HONN. In section 4 we verify our system by
approximating one and two-dimensional functions.

2. Problem statement

Let's consider a function y = f(y), y e Rrepresenting the actual function, and let

7= /?(x) be an approximation model of the actual function f(y). Consider the
approximation error as:

e = f(x) =~ F(x) (1)
Although we can directly measure the approximation error e, f(y) is completely
unknown for us. To overcome this uncertainty we consider the first order filter:

z=—uz +e 2

where z € R s the filter output and « is a design constant. In order to provide a
mathematical acceptable solution for our problem we use Higher Order Neural
Networks (HONN). HONN's are single layer fully connected nets, containing high
order connections of sigmoid functionsin their neurons of the form:

_ m
S(X)—W_/‘ ’ (3)

where the parameters m, |, represents the bound and the slope of sigmoid’ s curvature
and % is a bias constant. Mathematically, the neural network can be expressed in the
form:

P=w"S(x) 4
where )?is the approximation model, W is a L-dimensional vector of adjustable
weights, and finally S(x) isa L-dimensional vector which elements are in the form:

S, (x) =5'(x), i=0,1,2 ...L (5)
In the general case where x isa N dimensional vector, then the elements of the vector
S(x) arein the form:

s ()87 (x,)... 8" (x,) i, ....k=0,1,2,...,L (6)
where s(x) is a monotically increasing smooth function, in most cases represented by
the sigmoid function of the form (4). In other words, a HONN may be visualized as a
full scale polynomial of sigmoid functions. In the above product we are not consider
the case where i, j, ..., k are simultaneousy 0. HONN model is known for it's
excellent approximation properties further discussed in [6, 7]. The Higher order
neural network architecture that we use in our application presented in Figure 1. In
thistopology, in order to optimally approximate the candidate function, we choose the
maximum order L of HONN to be 6, and the maximum number of the regions where
¢ can take their possible values, to be 5. This pictured as a topology that has the form
of five paralel neura structures incorporated in one neural network. In order to
establish stable learning laws Lyapunov theory applied, a process described
extensively in [7,8]. The system of differential equations used in order to train the
HONN is:

z=-az+(y -y) )
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and
W=—y-W+z-s(x) (8)
In the above equations o and y are design constants and W are the connection weights
updated through the training process.

I nput

Hidden Layer

Figure 1 Higher Order Neural Network architecture

3. A structural genetic algorithm to optimize HONN’s architecture

Our paper proposes a structural genetic algorithm technique [4, 5] in finding an
optimal architecture for the HON network. Simultaneously the genetic algorithm
searches for the optimal parameters related with the activation function of the HONN
and the parameters a, y related with the learning process. This approach partitions the
genes of the chromosomes in connection genes and parameter genes. Connection
genes are hinary encoded in the chromosome structure and indicate the activity or not
of a connection in the network. Parameter genes, real-encoded in the chromosome
structure, represent a real parameter of the sigmoid activation function and two
parameters related with the training algorithm. The advantage of this approach is that
the connection genes are classified in a hierarchical form, which is the ided
formulation for the genes as the neurons, (or a network of neurons), can be formed
within the string of chromosome [4].
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Figure 2 Chromosome structure

This technique decreases the computational effort, decreasing simultaneously the
searching time in the binary space, resulting in searching much more network
topologiesin a predefined period.

Figure2 presents the chromosome architecture. Each one partitioned in three domains.
The first and the second incorporate the control genes, while the third region
incorporates the parameter genes. Control genes, divided in two main categories. the
first consists of the binary values of domain 1, which indicate the activity or not for
each one of the five parallel neura structures. The second category consists of binary
values of domain 2, indicating the activity or not of each neuron in each structure.
Parameter genes, represent the parameters of sigmoid activation function and two
design parameters (o and y) related with the training algorithm. A “*” indicates a
‘don’'t care symbol’. This means that if a ‘O’ is presented in the first layer, no
computation process is performed at the related sub-network. The complete form of
the genetic system presented in the block diagram of Figure 3. This system has the
ability to search for an optimal HONN topology, defining simultaneously optimal
parameters for the activation function of the network. In this system, for each
topology examined with genetic search, a parallel processis used to train the HONN,
defining the connection weights. Each cycle of the genetic search is known as a
generation. In order to initialize the vectors A and B of the chromosome a binary
generator used. This generator initialize the elements of the vectors, giving them the
values “0” or “1” with probability 50%. Then the analog part of the chromosome must
be initialized with random real values, considering the restrictions that m, I, a, y>O0.
The next step in the process is to compute the fitness value of each chromosome.
Each chromosome represents an integrated network structure, and a parallel training
process take place for each one. After the end of the learning process, testing samples
are introduced into each one of the trained networks-chromosomes and the objective
function is evaluated:
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Figure 3 Block diagram of the genetic system

ct

1+7

where ct is aconstant value and 1" is the accuracy function defined as:

N
f=) v (10)
i=0

where N isthe number of testing samples.

After the chromosomes are assigned with fitness values, they are sorted, and
chromosomes scored in the top 40% are designated as the candidate parents of the
next generation. All the other networks are disregarded [9].

Since there are two types of genes encoded in the chromosome, binary and real,
specific genetic operators designed to suit for their purposes. In this work a modified
crossover operator used. The couples of parents are randomly selected from the
mating pool. Each chromosome is divided into three regions (see Figure 2). Crossover
is to be applied in each of the above regions separately with probabilities p;, po, ps
respectively. Two real numbers ry r, are randomly selected. If ry is larger than p;, a
one-point crossover is to be applied in the genes of region 1. Bit strings are separated
in two parts by a randomly defined crossover point. Exchanging the parts of the two
parents creates the new chromosomes. If r, is larger than p,, one point crossover is to
be applied in the genes of region 2, as shown in Figure 4. A kind of internal crossover
operator is applied in this case. Each gene consists of 5 binary strings and we
randomly select two couples. The next step is to randomly select a crossover point
and the new gene created by exchanging the parts of the binary strings.

9)
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Figure 4 Crossover operation on control genes of region 2

The next step is to apply crossover operator in the analog part of the chromosome. A
binomial crossover operator used in this case [10]. For each real valued parameter of a
children chromosome, the value is taken from the first parent with probability ps, and
from the second parent with probability (1 — ps). It isimportant to mention here that it
is possible the three crossover operators to act simultaneously on the candidate
chromosome.
A modified mutation operator may act with probability p,. For each chromosome in
the mating poola real number r is randomly selected. If r is less than p,, mutation
operation is applied. Each one of the three parts of the chromosome has the same
probability of mutation to operate on it. In the binary part of the chromosome one bit
from the string selected randomly and change it’'s value. Mutation on the analog part
of the chromosome operates by randomly selecting a parameter thus adding random
noise. The difference in the value of the parameter is given by the equation:
Ax=05-(r)-x (11)
where r isarandom number in theinterval [-0.5 0.5].
Finally the chromosome with the highest fitness value is copied to the new population
created (Elitism criterion). In such a way a local search is performed around the best
chromosome of each generation [11].

4. Simulation results

To verify the performance of the proposed system two functions are used: The first
function has the form f(x)=x*+x+0.5 were —3<x<2. With the proposed method the

N
approximate error defined by: E :%Z(y— @2 (12) is reduced to 4.5-10°. The
1

second (X, Xo)=S(X1)+S(X1)S(X2)+S°(X1)S(X2)+S(X1)S (%) +S°(X2) Where s(x) given by
equation :

2

1+e™
In this system a number of 100 chromosomes are searching to find the optimum
solution with total number of generations 1500. In each generation the 30% of the top
scored chromosomes are considered as candidate parents for the genetic operations.
Crossover probability for each couple is 40%. Mutation probability for each
chromosome in the mating pool is 30%.

s(x) = -1 (13)
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In this application we choose the maximum order of the network to be 6, and c take
its values from 5 different spaces. Finally, input vector’s dimensionallity is 2. These
result in a network structure which contain 240 hidden units. The genetic algorithm
has to optimize 267 different parameters in order to define an optimum architecture
for the HONN. The two dimensional function is finally approximated with an error
defined by equation (12) that does not exeeds 1.677-10°°. Figures 5, 6 present how the
performance of the genetic algorithm evolves with the number of generations.

5. Conclusions

A hierarchical genetic algorithm is proposed to optimize High order neural network
topology and to define optimal parameter values for the activation function. Genetic
system have to tune alarge number of parametersin order to approximate optimally a
candidate function and considering the results presented above, our system is
effective.
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Figure 5 Performance of the genetic algorithm for f(x)=x>+x+0.5
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Figure 6 Performance of the genetic algorithm for f(x,,
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