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Abstract.

Each object in our environment can cause considerably different patterns
of excitation in our retinae depending on the observed viewpoint of the
object. Despite this we are able to perceive that the changing signals are
produced by the same object. It is a function of our brain to provide
this constant recognition from such inconstant input signals by estab-
lishing an internal representation of the object. The nature of such a
viewpoint-invariant representation, the way how it can be acquired, and
its application in a perception task are the concern of this work. We de-
scribe the generation of view-based, sparse representations of real-world
objects and apply them in a pose estimation task.

1 What can we Learn from the Brain?

There are uncountable behavioral studies with primates that support the model
of a view-based description of three-dimensional objects by our visual system.
If a set of unfamiliar object views is presented to humans their response time
and error rates during recognition increase with increasing angular distance
between the learned (i.e., stored) and the unfamiliar view [4]. This angle effect
declines if intermediate views are experienced and stored [11]. The performance
is not linearly dependent on the shortest angular distance in three dimensions
to the best-recognized view, but it correlates with an “image-plane feature-by-
feature deformation distance” between the test view and the best-recognized
view [2]. Thus, measurement of image-plane similarity to a few feature patterns
seems to be an appropriate model for human three-dimensional object recog-
nition. Experiments with monkeys show that familiarization with a “limited
number” of views of a novel object can provide viewpoint-independent recog-
nition [6]. Numerous physiological studies also give evidence for a view-based
processing of the brain during object recognition. Results of recordings of sin-
gle neurons in the inferior temporal cortex (IT) of monkeys, which is known
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to be concerned with object recognition, resemble those obtained by the be-
havioral studies. Populations of IT neurons have been found which respond
selectively to only some views of an object and their response declines as the
object is rotated away from the preferred view [7]. Summarizing, one can say
that object representations in form of single, but connected views seem to be
sufficient for a huge variety of situations and perception tasks.

In sections 2 and 3 we introduce our approach of learning an object represen-
tation which takes these results about primate brain functions into account. We
automatically generate sparse representations for real-world objects, which sat-
isfy the following conditions: (al) They are constituted from two-dimensional
views. (a2) They are sparse, i.e., they consist of as few views as possible. (a3)
They are capable of performing perception tasks. The last condition is verified
in section 4, where we apply our representations to estimate poses of objects.

2 View Bubbles

We start with the recording of a densely sampled set of views of the upper half
of the viewing sphere of a test object. We aim at choosing such views for a
representation which are representative for an area of viewpoints as large as
possible. To facilitate an advantageous selection of views a surrounding area
of similar views is determined for each view. This area is called view bubble.
For a selected view it is defined as the largest possible surrounding area on the
viewing hemisphere for which two conditions hold: (b1) The views constituting
the view bubble are similar to the view in question. (b2) Corresponding object
points are known or can be inferred for each view of the view bubble. The sim-
ilarity mentioned in (bl) is specified below. Condition (b2) is important for a
reconstruction of novel views as, e.g., needed by our pose estimation algorithm.
A view bubble may have an irregular shape. To simplify its determination we
approximate it by a rectangle with the selected view in its center (figure 1b)),
which is determined in the following way: Segmentation: Each recorded
object view is segmented by an algorithm based on gray level values [3]. It
separates the object from the background. Grid Graphs Labeled with Ga-
bor Wavelet Responses: Each of the recorded views is represented by a
grid graph which covers the object segment (figure 1a)). Each vertex of such a
graph is labeled with the responses of a set of Gabor wavelets, which describe
the local surroundings of the vertex. Such a feature vector is called jet. Track-
ing of Local Object Features: Jets can be tracked from a selected view to
neighboring views [8]. A similarity function S(G,G’) is defined between a se-
lected view and a neighboring view, where G is the graph which represents the
selected view and G’ is a tracked graph which represents the neighboring view.
Utilizing this similarity function we determine a view bubble for a selected view
by tracking its graph G from view to view in both directions on the line of lati-
tude until the similarity between the selected view and either the tested view to
the west or to the east drops below a threshold 7, i.e., until either S(G,G%)<T
or S(G,G¢) < 7. The same procedure is performed for the neighboring views
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Figure 1: a) Grid graph covering the object. b) A section of the upper viewing
hemiphere of an object is shown. Each grid crossing stands for one view. 12 selected
views are marked by dots. Their associated view bubbles overlap on a large scale
c) Virtual view V reconstructed from interpolated graph G d) Virtual test view Vir
reconstructed from its original graph Gr.

on the line of longitude, resulting in a rectangular area with the selected view
in its center (figure 1b)). The representation of a view bubble consists of the
graphs of the center and four border views B := (G,G%,G¢, G*,G"), with w, e,
s, and n standing for west, east, south, and north.

3 Sparse Object Representation R

To meet the first condition (al) of a sparse object representation we aim at
choosing single views (in the form of labeled graphs) to constitute it. To meet
the second condition (a2) the idea is to reduce the large number of overlapping
view bubbles and to choose as few of them as possible which nevertheless cover
the whole hemisphere. For the selection of the view bubbles we use the greedy
set cover algorithm [1]. It provides a set of view bubbles which covers the
whole viewing hemisphere We define the sparse object representation by R :=
{(Gi,G1°,G5,G?,G7) }icr where R is a cover of the hemisphere. Neighboring
views of the representatlon are “connected” by known corresponding object
points (the correspondences between center and border views), which have
been provided by the tracking procedure. Figure 2 shows different covers of
the hemisphere for two test objects. In figure 3 the views which constitute a
sparse representation of the object “Tom” are displayed.

4 Pose Estimation Utilizing R

To prove our sparse representation’s capability to perform perception tasks
(condition (a3)) we apply it to estimate the pose of an object. Given an ob-
ject’s representation R and given a test view T of the object, the aim is the
determination of the object’s pose displayed in T, i.e., the assignment of T" to
its correct position on the viewing hemisphere. Let Gr be the graph, which
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Figure 2: Different covers for two test objects. Depending on the tracking threshold 7
used for the generation of the view bubbles different partitionings of the viewing
hemispheres are obtained. The numbers next to the hemispheres are the numbers of
view bubbles constituting the cover.

is extracted from the original image of view T after it has been divided into
object and background segments. Let I;,i€R, be the center images of the view
bubbles the graphs G; are extracted from. Our pose estimation algorithm pro-
ceeds in two steps. First, we match Gr to each image I; using a graph maching
algorithm [5]. As a rough estimate of the object’s pose we choose that view
bubble B the center image I; of which provides the largest similarity to Gr. In
a second step we generate a virtual graph G for each unfamiliar view inside the
area defined by B by (1) an interpolation of corresponding jets and (2) a linear
combination of corresponding vertex positions in the center and border graphs
of B [9]. From each virtual graph G we reconstruct a virtual view V using
an algorithm which reconstructs the information contained in Gabor wavelet
responses [10] (figure 1c)). Accordingly, we reconstruct a virtual test view Vp
from Gr (figure 1d)). The estimated pose T of the test view T is the position
on the viewing hemisphere of that virtual view v which provides the smallest
error €(V,Vr) in a pixelwise comparison between Vr and each V [9]. Results
from pose estimation experiments are displayed in figure 4.

5 Conclusion

The fact that the mean pose estimation deviations for a reasonable partition-
ing of the viewing hemisphere (7 = 0.85) are smaller than 5° for both test
objects supports a good quality of our sparse object representation and allows
the conclusion that a view-based approach to object perception is suitable for
performing perception tasks as it is advocated by brain researchers.
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Figure 3: The graphs which represent these views constitute the sparse representation
R of object “Tom” for a tracking threshold of 7=0.75. The six view bubbles which
constitute this representation are enclosed in boxes with their center and border views.
The bubbles b), ¢), and d) are almost identical, because none of them can be omitted
to cover all views which are covered by the union of them.
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Figure 4: For three partitionings of the viewing hemisphere and two test objects the
results of the pose estimation experiments are depicted. Light gray squares: views
represented in R; black dots: positions of 30 test views T'; dark gray circles: resulting,
estimated positions T. The arrow points at 10 test views and their estimations which
have been achieved with the sparsest representation for object “Tom”, which is dis-
played in figure 3. The mean estimation deviations indicated next to the hemispheres
are taken over 30 test views for each object and each partitioning of the hemisphere
separately. They are decreasing with an increasing value of 7, i.e., with an increasing
number of sample views in R. For example, for object “Tom” and the partitioning of
7 = 0.75 the average deviation of the estimated pose T to the true pose T is 36.51°.
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