ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 463-468

Extracting Interface Assertions from Neural Networks
in Polyhedral Format

Stephan Breutel, Frédéric Maire, Ross Hayward
Smart Devices Laboratory
Faculty of Information Technology
Queensland University of Technology
GPO Box 2434, Brisbane Qld 4001, Australia

Abstract. It is difficult to have confidence in software components
if they have no clear and valid interface description. In this paper we
describe a new method that determines informative interface assertions
for the function f, learned by a feed-forward neural network or sigmoidal
support vector machine from training data. The interface assertions we
are considering are of the form “if y € R, then f~!(y) C R;”, where y is
an output vector in the region R, of the output vector space and f~'(y)
is a set of input vectors x, such that f(x) = y. The most refined interface
assertions are obtained when R; is the reciprocal image of R, by f. The
method introduced in this paper computes a polyhedron containing R;
from a polyhedral output region R,. Empirical results indicate that the
complexity of the proposed method scales well with the number of nodes
per layer.

1 Introduction

The safety requirements for software in areas such as airplane control and med-
ical applications highlight the importance of software verification in computer
science. For a neural network application, one might, for example, forbid spe-
cial output regions. In this case it is important to show that these output
regions are not, reached by the neural network operating within a specified in-
put range.

To validate neural networks, we can provide a set of conditions on the input
under which a set of output conditions are valid (and vice versa). Let f be
the function a feed-forward neural network has learned from the training data.
The interface assertions we are considering here are of the form: ! “if y € R,
then f~1(y) C R;”, where y is an output vector in the region R, of the out-
put vector-space and f~1(y) = {x|f(x) = y}. Historically people have used
axis-parallel hypercubes for R; and R, to extract rules from neural networks
[3]. However, the most refined interface assertions are obtained when R; is
the reciprocal image of R, by f. We approximate the reciprocal image by
successively back-propagating finite unions of polyhedra through all layers of
a feed-forward neural network, as unions of polyhedra are capable of concisely

IWe also work on forward-propagating regions, i.e. extracting knowledge of the form:“if
x € R; then f(x) € Ro”. In both cases, we use the terminology interface assertions.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 463-468

describing arbitrary regions of higher dimensional vector spaces.

The idea of propagating regions through a neural network was first introduced
in [2] by considering axis-parallel hypercubes. The approach, called Validity
Interval Analysis, is based on a refinement process that is performed by forward-
and backward propagating hypercubes through the neural network. However,
hypercubes are not closed under affine transformations, whereas polyhedra are
[1]. The algorithm presented in [1] works perfectly for linear transformations,
but the complexity of the method for non-linear transformations does not scale
well with the number of nodes per layer. In this paper we follow a different
approach that scales better.

The paper is organized as follows: Section 2 describes how to back-propagate
a polyhedron through a neural network. Section 3 provides empirical results.
We conclude this paper and describe future work in Section 4.

2 Backpropagating Polyhedra

In this section, we explain how to backpropagate a polyhedron through a single
weight layer network. We successively apply the algorithm to each layer of a
multi-layer network, starting from the output layer back to the input layer.

A polyhedron P = {x | Ax < b} is the intersection of a finite number of
half-spaces. We assume that our polyhedron are bounded. From a practical
point of view this assumption is justified as neural networks normally deal with
finite inputs. A box B is an axis-parallel hypercube, a subscript indicates if the
box is in the input () or output (y) space. A superscript denotes an iteration
index.

Affine transformation phase It is easy to show [1] that the reciprocal
image of a polyhedron P, = {y|Ay < b} under an affine transformation x —
I'(x) = Wx 40 is given by: P, = {x|]AWx < b — Af}. Linear programming
methods are used to remove redundant inequalities.

Transfer function phase In [1], a piece-wise linear approximation of the
sigmoid function was used to approximate the true reciprocal image of a back-
propagated polyhedron. This idea is practical only for low dimensional cases,
i.e. small number of neurons, as it splits the vector space into m™ boxes, where
m is the number of piece-wise linear functions and n is the number of neurons,
which results in an exponential time and space complexity.

Our approach avoids this problem by computing a polyhedron containing the
true reciprocal image. The direction vector g of each hyperplane (facet) of this
wrapping polyhedron has to be determined. The gradient vector of a point on
the manifold of the true reciprocal image is possibly the best choice, as this
leads to the exact solution for linear transfer functions. Our problem can be
stated as follows: given a polyhedron P, = {y|Ay < b} in the output space
(y-space) of a transfer function layer we want to compute the smallest poly-
hedron, with respect to the chosen directions g’s, that contains the reciprocal
image R= o }(P,) ={x|Ac(x) < b} in the input space (z-space). Once we
have chosen a direction vector g for a hyperplane we have to determine the

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 463-468

optimal position, i.e. a position tangent to the region R. This problem can be
expressed as a non-linear optimization problem in z-space 2:

mar grx subjectto Ac(x)<b

The solution of this optimization problem defines the optimal position for a
hyperplane H = {x|g”x = 8}, such that R C H~ = {x|g”x < 8}.

We use a binary search method to find for a hyperplane # a position as close as
possible to the region R= {x|Ao(x) < b}, such that R C H~. At the begin-
ning, H is positioned with the midpoint between a point q, on the manifold of
R, and the vertex p;, the corner with the maximum value for the cost-function
gTx subject to x € BY = O(R), where J(R) denotes the smallest axis-parallel
hypercube containing the region R. The hyperplane is moved closer towards R
if RNHT is empty. To determine whether R N H ™ is empty, a box-refinement
process is applied (similarly [2] used a box-refinement process to refine axis-
parallel rules). If there is no intersection we can move the hyperplane closer
towards R, otherwise we move the hyperplane further outside. We stop the
algorithm if the distance between two consecutive hyperplane positions is less
than a small value ¢, or if the volume of the refined box B, is very small. In
the last case we know that there is an intersection between B, and the region
R. We can position H to a corner of B, outside of R. It can be shown that the
upper bound for the distance between R and H is then given by the diagonal
of the box.

binary search - main algorithm

//InitPhase

Py = {y|Ay <b}; By =0(P,); B, = O(c " (B)))
p. =argmar g'x s.to xe€BY;

qy, = argmaz gTy sito Ay < b;

A =0 (qy); AN =0.5; X = 0.5;

//MainLoop

do

[

m; =p; +Aqz —pz); H= {x|ng = ngw}§
B = reﬁne(Bg,Bg,Py,'H); AX=0.5 AN

if (V(B:)=0) A=Xta\

else A=)A— A\

Jwhile ((V(B:) >€e)A(AX>¢€))

The crucial part of our algorithm is the box refinement process. The refinement
process is a succession of a box refinement in x-space followed by a forward-
propagation of the refined box to y-space, and a refinement process in y-space

2A nice feature of our method is that the calculation can be distributed among different
CPU'’s, according to the chosen number of hyperplane directions.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 463-468

followed by a back-propagation of the refined box to z-space. We will say we
send a box from z-space to y-space and vice versa. The refinement for the k+1
iteration in z-space is calculated by: B! = O(B¥ N #*) and in y-space by:
Bit! = 0O(BENP,). The forward-propagation of a box from z-space to y-space
is a component-wise application of the sigmoid function on the box, similarly
the backward-propagation of a box from y-space to z-space is a component-
wise application of the inverse sigmoid function on the box. We repeat this
process until we know if there is an intersection between the half-space H* and
the region R. In Figure 1 we depict an example for the refinement process.

v-Space w-Space
1 25 P x
B} / z g
0.5 1.5
i}
= % B 1 B BY
o] 05
0 — &
-0.5 -0.8
-1 -0.5 0.8 -3 -2 -1 o 1
bl 1

(a) On the right hand side of the above figure: Previously H was already positioned

closer to R. At this stage A = 0.75 and A X\ = 0.125. We send the box BL = O(BINHT)
to y-space and compute By = o(By,), which is illustrated on the left hand side.

y-Space w=Space
1 25 P %
e
2
ot
By
0.5 1.5
o % By A B2
B2
a 05
L
L8]
-0.5 -0.5
-1 05 0 a5 -3 -2 -1 0 1
2l ¥l

(b) As depicted on the left hand side, we calculated in y-space By = (B, N Py).
After calculating the new box B} = o~'(B}), we detected that there is no intersection

between the half-space %1 and the region R, because B2 is completely in H~. This
means: B2 = (B2 N‘H1) = 0 and therefore: H can be moved again closer towards R.

Figure 1: Example for the refinement process.

The refinement algorithm relies on the following two lemmas:

Lemma 1: B, No Y(P,) #0 iff o(B,) NP, # 0

Lemma 2: O(BNR) C B, where B is a box and R is an arbitrary region.
We start with the box B = O(BY nH*), i.e. BL is the box of the intersection
of the wrapping hypercube BY and the half-space H*. If this box intersects

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 463-468

the region R then the corresponding box B; = o(Bl) intersects P, in y-space
(see Lemma 1). In y-space we determine the box of the intersection between
B, and Py, i.e. B, = O(B, N'P,). B; is either (see Lemma 2) an empty box,
ie. B, NP, =0, an unchanged box, i.e. O(B, NP,) = B, or a refined box,
ie. D(B; nPy,) C B;. We send the refined box back to z-space and have again
this three cases when intersecting the box with H*. In the third case we have
to repeat the refinement process if the volume of the refined box (in z-space)
is bigger than a predefined small value ¢, for all other cases we can stop the
refinement process (note that a box is considered as unchanged, if the volume
of the set difference between two consecutive boxes, denoted as V (BXABr1),
is less than a small value €).

B, = refine(BY, By, Py, H)
k=0;BE =0Bnu™)
do
[//forward,ie. X —Y
k=k+1; By =o(Bs); B =0B8)n7P,);
//backward,ie. Y — X
k=k+1; By=o0"'(By); B =0(B;nH");
|while(V(BETY)Y £0 A V(BEABE) >e A V(BEY >
B, = By

3 Empirical Results

We tested the binary search algorithm to position a single hyperplane close to
the region R=o~!(P,) ={x|Ac(x) < b} for randomly constructed polyhedra
(approximately 100 per dimension) and randomly chosen direction vectors g’s.
Before using a binary search method, we tried a branch and bound approach
to solve the optimization problem:

mar gTx subject to Ao(x)<b

We compared the binary search algorithm and the branch and bound method
with the same data. To assure comparable solutions between the two methods
the binary search algorithm stopped once the solution was better or similar to
the corresponding branch and bound solution. The table below contains the
95% confidence intervals of the computation times.

Dimension | Branch and Bound, time in s. | Binary search, time in s.
3 [24.1 , 30.8] [16.1 , 29.8]
4 58.9 , 81.9] 26.3 , 64.9
5 98.8 , 151.4] 25.0,494
6 150.8 , 243.4 19.0 , 45.5
7 277.5 , 464.6 27.8 , 53.8
8 569.8 , 1195.3 324 ,63.3
9 945.2 , 21474 39.2,63.3

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 463-468

In Figure 2 we plotted the number of refinement steps and the time in seconds
together with the lower and upper bounds of the 95% confidence interval.

18 . ‘ ‘ ‘ ‘ 65 T

RN
161 S~ 601 /
A

/
550 E

-
>

\ 1 N
\ 500 ' N
\ -

[N
N

Refinement Steps
=
o

3 4 5 6 7 8 9 3 4 5 6 7 8 9

Dimension Dimension
(a) Average number of refinement steps. (b) Average time in s.

Figure 2: Average number of refinement steps and time complexity.

4 Conclusion and future work

Given a set of polyhedral constraints on the output space of a feed-forward
neural network our algorithm produces an approximation of the corresponding
true reciprocal image in the input space. We approximate the true reciprocal
image for the non-linear phase from outside, i.e. the true reciprocal image
is completely contained in the polyhedral approximation. Empirical results
showed that the proposed binary search method scales well with the dimension,
and in addition, the proposed binary search strategy can be applied to any
invertible function.

Future research will include the forward-propagation of a polyhedron through a
neural network, which would allow interface assertions of the form: “if x € R;
then f(x) € R,”. We also work on better refined approximations of a region
‘R by using multiple polyhedra instead of a single polyhedral approximation.

References

[1] F. Maire. Rule-extraction by backpropagation of polyhedra. Neural net-
works, 12:717-725, 1998.

[2] S. B. Thrun. Extracting Provably Correct Rules from Artificial Neural
Networks. Technical Report IAI-TR-93-5, Department of Computer Science
I1I, University of Bonn, 1993.

[3] A. Tickle, R. Andrews, Mostefa Golea, and J. Diederich. The truth will
come to light: Directions and challenges in extracting the knowledge em-
bedded within trained artificial neural networks. IEEE Transactions on
Neural Networks, 9(6):1057-1068, 1998.

