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Abstract. In previous papers we proposed Associative Morphological
Memories (AMM)as tools for endmember extraction in hyperspectral im-
ages. Linear Spectral Unmixing (LSU) based on these endmembers is a
kind of unsupervised image segmentation. In this paper we propose that
the fractional abundance coefficients may be used as features for the con-
struction of supervised pixel spectra classifiers. Thus we compare them
with two well-known linear feature extraction algorithms: Principal Com-
ponent Analysis (PCA) and Independent Component Analysis (ICA).

1 Introduction

Construction of supervised classifiers often employs some feature extraction al-
gorithms, which are data dimension reduction procedures applied to the experi-
mental data prior to training or operation of the classifier. The goals of feature
extraction are both computational efficiency and enhanced discrimination of the
data classes. Linear feature extraction algorithms, like Principal Component
Analysis (PCA) [1], Linear Discriminant Analysis (LDA) [1], Independent Com-
ponent Analysis (ICA) [6] are defined as a linear transformation that minimizes
some criterion function, like the mean square error (PCA), a class separability
criterion (LDA) or an independence criterion (ICA). The alternative approach
we propose in this paper is to characterize the data by a convex region that
encloses 1t or most of it. The features extracted are the coordinates of the data
points in this region relative to its vertices: the convex coordinates. Depending
on the application, the meaning of these vertices varies. In hyperspectral image
processing they are identified with endmember materials in the assumed linear
mixing model [8], in which several basic materials (endmembers) are combined
according to their abundance coefficients at each 1mage pixel. The computation
of the abundance coefficients, given a pixel spectrum and a set of endmembers,
is the so-called unmixing procedure. If the endmembers are known a priori, the
unmixing procedure is equivalent to the parallel detection of the spectral fea-
tures represented by the endmembers (i.e.: materials). If the endmembers are
inferred from the image data, the procedure may be interpreted as an unsuper-
vised segmentation of the image. However the focus in this paper is assuming
the abundance coefficients as the feature vectors for the supervised classifier
construction. For the endmember induction we apply two alternative methods:
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the Convex Cone Analysis (CCA) [7] and an approach based on Associative
Morphological Memories (AMM) morphological independence [2, 3].

2 Linear feature extraction: ICA and PCA

The Independent Component Analysis (ICA) [6] assumes that the data is a lin-
ear combination of nongaussian, mutually independent latent variables with an
unknown mixing matix. The ICA reveals the hidden independent sources and
the mixing matrix. That is, given a set of observations represented by a d di-
mensional vector x, [CA assumes a generative model x = As, where s is the M
dimensional vector of independent sources and A is the d x M unknown basis
matrix. The TCA searches for the linear transformation of the data W, such
that the projected variables Wx = s are as independent as possible. It has been
shown that the model is completely identifiable if the sources are statistically
independent and at least M — 1 of them are non gaussian. If the sources are
gaussian the ICA transformation could be estimated up to an orthogonal trans-
formation. Estimation of mixing and unmixing matrices can be done maximizing
diverse objective functions, among them the non gaussianity of the sources and
the likelihood of the sample. We have used the FastICA [5] algorithm available at
http://www.cis.hut. /projects/ica/fastica. The Principal Component Analysis
(PCA)[1] is a well-known linear dimension reduction procedure that is optimal
in the sense of the mean squared error. It consists in the selection of the largest
eigenvalue eigenvectors of the data covariance matrix. These eigenvectors con-
stitute the transformation matrix. The selection of the number of eigenvectors
or the independent components can be made attending to some quantitative
criteria, but in our experiment below we selected the number of components in
the ground truth image.

3 Linear mixing model

The linear mixing model [8] can be expressed as follows:

M
x:Zaisi—i—w:Sa—l—w, (1)

i=1

where x is the d-dimension pattern vector, S is the d x M matrix whose columns
are the d-dimension vertices of the convex region covering the datas;;2 =1,.., M,
a is the M-dimension fractional abundance vector, and w is the d-dimension ad-
ditive observation noise vector. The linear mixing model is subjected to two
constraints on the abundance coefficients. First, to be physically meaningful, all
abundance coefficients must be non-negative a@; > 0,2 = 1, .., M. Second, to ac-
count for the entire composition, they must be fully additive Zf‘il a; = 1. Once
the convex region vertices have been determined the Linear Spectral Unmixing
(LSU) is the computation of the matrix inversion that gives the coordinates of
the point inside the convex region. The simplest approach is the unconstrained
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least squared error estimation given by:
a=(s7s)” sTx. 2)

In the setting of hyperspectral image processing, the convex coordinates are
interpreted as the fractional abundance coefficients of the endmember materials
in the scene pixel.

4 The Convex Cone Analysis (CCA)

The CCA was proposed by [7]. The basic idea is that after PCA of the spectral
correlation matrix, the data falls in a cone shaped region in the positive subspace
centered in the first eigenvector. Given the N x M x d hyperspectral image, it is
reorganized as a N M x d matrix X. The spectral correlation matrix is computed
as C = X7 X. Let it be C = PLP? the PCA decomposition of the correlation
matrix, select the first ¢ eigenvectors [p1, .., p.] = P. and search for the bound-
aries of the convex region characterized by x = p;+ai1p2+.. + ac—1pc> 0. The
vertices of this region are the points with exactly ¢ — 1 zero components. The
CCA algorithm searches among all the (cfl) possible combinations of eigen-
vectors performing the following test. Let it be [p (71),.., P (ve—1)] = P’ the
selected set of eigenvectors. Solve the set of equations P’a = 0 and compute
x = P.a. If x has exactly ¢ — 1 zero components it 1s a vertex of the convex re-
gion data. In practice, each component is tested against a threshold. However,
as the combinatorial space grows the problem becomes intractable. We imple-
mented an straightforward random search. Application of more sophisticated
random search algorithms like genetic algorithms may be of interest for large
problems. The CCA algorithm provides the endmembers that may be used to
compute the abundance images.

5 The AMM approach

The Associative Morphological Memories (AMM) [9, 10, 11] are the morphologi-
cal counterpart of the well known Hopfield Associative Memories [4]. AMM’s are
constructed as correlation matrices computed by either Min or Max matrix prod-
uct. Dual constructions can be made using the dual Min and Max operators.
The AMM selective sensitivity to specific types of noise (erosive and dilative
noise) is of special interest to us. It was established that AMM are able to store
and recall morphologically strongly independent sets of patterns. To obtain gen-
eral noise robustness [9], [11], [12] proposed the kernel method. Related to the
construction of the kernels, [11] introduced the notion of morphological indepen-
dence. Here we distinguish erosive and dilative versions of this definition: Given
a set of pattern vectors X = (xl, e xk), a pattern vector y is said to be mor-
phologically independent of X in the erosive sense if y € x7;y = {1, ..,k}, and
morphologically independent of X in the dilative sense if y # x7;v = {1, .., k}.
The set of pattern vectors X is said to be morphologically independent in either
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sense when all the patterns are morphologically independent of the remaining
patterns in the set.

The region of the space enclosed by a set of vectors that are morphologi-
cally independent in both erosive and dilative senses simultaneously is a high
dimensional box that approaches the minimal simplex enclosing the data points.
The steps in the endmember induction procedure are detailed in previous pa-
pers [2, 3]. In short it may be described as follows: At each instant we maintain
two erosive and dilative MAM built up from the detected endmembers. The set
of endmembers is started with a randomly selected sample data point (image
pixel). The data sample (image pixels) is processed sequentially, for each data
point {f (@) eRYi=1,.., n} we compute the eroded and dilated versions of it
previous to using it as inputs to the dilative and erosive MAM respectively. Fail-
ing to recover an stored endmember means that the data point has some kind of
morphological independence as is a candidate to be a new endember. There is
a gain parameter « controls the amount of flexibility in the discovering of new
endmembers. Usually o = 2 gives the desired results.

6 Experimental results

We have applied the linear dimension reduction methods and the LSU based
on the discussed endmember induction methods to two well known real hyper-
spectral experimental data, obtained by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) developed by NASA JPL which has 224 contiguous spec-
tral channels covering a spectral region from 0.4 to 2.5 mm in 10 nm steps. The
first hyperspectral image used for this work correspond to the Indian Pines 1992
image. It is a 145 by 145 pixel image with 220 spectral bands. The available
image ground truth designates 16 mutually exclusive classes of land cover [13].

The second is real hyperspectral data collected by the AVIRIS imaging spec-
trometer in 1998 over Salinas Valley, California. The full scene consists of 512
lines by 217 samples with 224 spectral bands with a spatial pixel resolution of
3.7mx3.7m. The available ground truth has 15 classes. When applying the PCA,
ICA and CCA methods we have set the target dimension to the exact number of
ground truth components. Our AMM approach needed the setting of the noise
gain parameter «. Setting a = 2 we obtained 12 endmembers on the Salinas
image. Setting o = 3 we obtained 6 endmembers on the Salinas image.

The supervised classifiers employed were the Nearest Neighbor (NN), the
Gaussian Classifier (GC) using the FEuclidean distance, and the Support Vec-
tor Machines (SVM) [14] with a Radial Basis Function (RBF) kernel of iden-
tical unit variances, using the implementation by Anton Schwaighofer available
at http://www.cis.tugraz.at /igi/ aschwaig/software.html. No attempt has been
made to fine tune the SVM. The motivation for this selection of classifiers is
that they do not introduce additional bias in the experiment, which is aimed to
show the value of the LSU as feature extraction algorithm.

The experiment consisted in 30 repetitions of the construction and validation
of the clasifiers over 50% random partitions of the data, which preserve the a
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Nearest Neigh. | Gaussian C. | SVM
raw 0.19 0.08 0.23
PCA | 0.16 0.05 0.24
ICA 0.14 0.03 0.35
CCA | 0.33 0.20 0.48
AMM | 0.34 0.25 0.64

Table 1: Correct recognition over the Indian Pines data.

Nearest Neigh. | Gaussian C. | SVM
raw 0.08 0.11 0.21
PCA | 0.33 0.17 0.36
ICA 0.13 0.07 0.38
CCA | 0.57 0.41 0.75
AMM | 0.61 0.50 0.89

Table 2: Correct recognition over the Salinas data.

priori distributions of the classes. We did not perform any band selection or
smoothing of the pixel spectra in the experimental results presented here. The
results of the experiment are presented in tables 1 and 2. They consist of the
average accuracy of the classifiers.

The SVM improves greatly over the other classifiers, as may be expected
from the results in the literature. However, we are more interested in analyzing
the results by rows. The results on the raw data are very bad, but, surprisingly,
PCA and ICA do not improve very much over them most of the times. Finally,
both LSU based methods, CCA and AMM improve substantially over the linear
projection methods. The SVM with AMM LSU feature extraction gives an
almost state of the art result.

7 Conclusions

We claim that the convex coordinates of the data points based on the vertices
of a convex region (approximately)covering the data can be used as features
for the construction of supervised classifiers. The experiment on a very noisy
hyperspectral image confirm this intuition and opens the way for further system-
atic experimentation with other hyperspectral images and other kinds of data.
Besides, this experiment confirms also that our approach to the induction of
endmembers from the data, the AMM approach 1s, at least, comparable to other
well-established methods, like CCA. The idea of using approximations of the
convex hull of the data to characterize it may serve as a further justification for
the research in morphological learning algorithms and neural networks that go
away from denoising in image processing paradigm.
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