
Perceptron Learning with Discrete Weights

Joaquim Marques de Sá1,2 and Carlos A. S. Felgueiras2 ∗

1- Universidade do Porto, Faculdade de Engenharia, DEEC
Porto - Portugal
jmsa@fe.up.pt

2- INEB – Instituto de Engenharia Biomédica
Porto - Portugal

Abstract. Perceptron learning bounds with real weights have been pre-
sented by several authors. In the present paper we study the perceptron
learning task when using integer weights in [−k, k]d+1. We present a sam-
ple complexity formula based on an exact counting result of the finite class
of functions implemented by the perceptron, and show that this bound is
less pessimistic than existing bounds for the discrete and, in certain con-
ditions, also for the continuous weight cases.

1 Introduction

Learning bounds for general and restricted machine learning models have been
presented by several authors. Surveys of these bounds can be found in [1], [2], [3]
and [4]. Influential articles on this issue are [5] and [6]. Sample complexity for-
mulas based on such bounds have also been presented for neural networks (NN),
assuming either infinite or finite classes of functions implemented by the NN. In
the first case, the bounds are based on the VC-dimension [3]; in the second case,
simple class cardinality bounds are used [1].

Since any physical NN implementation is discrete and finite it seems worth-
while to study in detail the discrete and finite NN case. In the present paper we
only consider a simple perceptron having as input a d-dimensional vector x plus
a bias, and using a linear threshold as activation function at the output. We thus
assume that our perceptron implements hyperplanes in R

d corresponding to a
φw : X → T mapping from an object space, X ⊆ R

d, into a dichotomic target
space T , defined by a weight vector w from space W . We denote by φ(x,w) the
perceptron output using some weight vector w ∈ W .

The perceptron learning task consists of the minimization of a risk functional:

R(φ) =
∫

Q(z,w)dF (z), w ∈ W

with

Q(z,w) =
{

0 if t = φ(x,w)
1 if t �= φ(x,w)

where z = (x, t) are data pairs and F (z) is the data distribution.

∗This work was supported by the Portuguese FCT-Fundação para a Ciência e a Tecnologia
(project POSI/EIA/56918/2004).

We assume that the perceptron is designed to minimize the empirical error
on an n-sized training set Dn = {zi = (xi, ti) : xi ∈ X, ti ∈ T, i = 1, 2, . . . , n}:

R̂n(φ) =
1
n

n∑
i=1

I{φ(xi) �=ti} (xi)

where I(.) is the indicator function.
In the following sections we start by presenting some learning bounds for

finite classes of classifiers and then apply these results to the perceptron, using
an exact formula for the cardinality of discrete hyperplane spaces derived by one
of us [7]. Finally, we derive new sample complexity formulas and compare their
performance with competing formulas.

2 Learning Finite Classes

A well-known bound for finite class learning is based on Hoeffding’s inequality
and the union bound property [1]. For any probability measure P and positive
ε and n, we have:

P

(
max
φ∈C

∣∣∣R̂n(φ) − R(φ)
∣∣∣ > ε

)
≤ 2|C|e−2nε2

(1)

where |C| is the cardinality of a finite set of classifiers, C.
One can also derive relative learning bounds depending on the true classifier

risk, R(φ), using Bernstein or Bennett inequalities [8]. Given n independent
random variables x1, . . . , xn with |xi| ≤ c, zero mean and E

[
x2

i

]
= σ2, for any

ε > 0 we have:

P

(
1
n

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− nε2

2 (σ2 + cε/3)

)
(2)

P

(
1
n

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≥ ε

)
≤
((

1 +
cε

σ2

)− 1+cε/σ2

1+c2/σ2
(
1 − ε

c

)− 1−ε/c

1+σ2/c2

)n

(3)

for the Bernstein (2) and Bennett (3) inequalities.
In order to apply this result we notice that:

R̂n(φ) − R(φ) =
1
n

n∑
i=1

(
I{φ(xi) �=ti} − R(φ)

)

The random variables χi = I{φ(xi) �=ti} − R(φ) have a Bernoulli distribution
with:

c = 1 − R(φ); σ2 = R(φ)
(
1 − R(φ)

)
Thus, using (2) and (3), the two-sided uniform convergence bound in (1) can

be rewritten as

P

(
max
φ∈C

∣∣∣R̂n(φ) − R(φ)
∣∣∣ > ε

)
≤ 2|C| exp

(
− nε2

2
(
1 − R(φ)

)(
R(φ) + ε/3

)
)

(4)

P

(
max
φ∈C

∣∣∣R̂n(φ) − R(φ)
∣∣∣ > ε

)
≤ 2|C|

((
1 +

ε

R

)−(R+ε)
(

1 − ε

R̃

)ε−R̃
)n

(5)

for the Bernstein and Bennett bounds, respectively. In (5) we have dropped the
argument φ and defined R̃(φ) = 1 − R(φ).

As we will see in the next section, the bound (4) performs better than (1),
especially for low values of R(φ) and the bound (5) outperforms both bounds.

3 Discrete Perceptron Sample Complexity

The sample complexity nL(ε, δ) of a learning algorithm, L, is defined as the
smallest n such that for given ε, δ ∈]0, 1[(accuracy and confidence, respectively),
and all training sets Dn, the algorithm yields a classifier φn = L(Dn) satisfying

P

(
R(φn) − min

φ∈C
R(φ) > ε

)
≤ δ

for every n ≥ nL(ε, δ). We use min(.) instead of inf(.) because we are dealing
with a finite set of classifiers.

A Lemma due to Vapnik and Chervonenkis (1974) states that:

R(φ∗
n) − min

φ∈C
R(φ) ≤ 2sup

φ∈C

∣∣∣R̂n(φ) − R(φ)
∣∣∣

where φ∗
n = arg minC R̂n(φ), the empirical risk minimization (ERM) function.

Using this result one can easily express the sample complexity in terms of the
bounding n for (4) and (5).

Theorem 1. Let C be the class of perceptrons with d inputs and integer weights
in range [−k, k]. Denote the cardinality of C by Nd(k). Then, for any P , ε and
δ, the following sample complexity bounds hold:

nL(ε, δ) = 4
(
1−R(φ∗

n)
)(

2R(φ∗
n)+ε/3

)
ε2 log

(
2Nd(k)

δ

)
(6)

nL(ε, δ) = 1

(R+ ε
2) log(1+ ε

2R)+(R̃− ε
2) log(1− ε

2R̃
) log

(
2Nd(k)

δ

)
(7)

using the Bernstein and Bennett’s inequalities, respectively.

Proof. Using (4) and (5) one can derive a bounding n for the absolute difference
between empirical and true errors. It is then straightforward to derive formula
(6) and (7) taking into account the previous Lemma (amounting to a substitution
of ε by ε/2). A formula for Nd(k) is presented in the Appendix.

We proceed to comparing this result with other sample complexity formulas
found in the literature. For a perceptron with b-bit weights the following formula
can be found in the literature (see e.g. [1]), based on Hoeffding’s inequality and
the following bound for the cardinality of C, |C| ≤ 2b(d+1):

nL(ε, δ) ≤ 2
ε2

(
b(d + 1) log 2 + log

(
2
δ

))
with b = �log2(2k + 1)�

Alternativelly, using our 2Nd(k) formula

nL(ε, δ) =
2
ε2

log
(

2Nd(k)
δ

)
(8)

(a)

0 0.1 0.2 0.3 0.4 0.5
0

1000

2000

3000

4000

5000

6000

7000

8000

R(φ∗
n)

n
L

Equation (8)
Equation (6)
Equation (7)

(b)

0 0.1 0.2 0.3 0.4 0.5
0

2000

4000

6000

8000

10000

12000

R(φ∗
n)

n
L

Equation (8)
Equation (6)
Equation (7)

Fig. 1: Sample complexity for δ = 0.05, ε = 0.05, k = 4 (a) and k = 16 (b)

Figure 1 shows the sample complexity given by formulas (6), (7) and (8) with
respect to R(φ), for two-input (d = 2) perceptrons and two distinct values of k.
We see that formula (6) yields a smaller bound than formula (8), especially for
small values of R(φ), yet performing badly for large values of R(φ). The bound
(7), based on Bennett’s inequality, performs better for all values of R(φ).

Finally, we compare with the sample complexity bound for the continuous
weight perceptron. For this purpose we use a result due to Vapnik and Chervo-
nenkis. Let C be a class of classifiers defined on a set X. Then, for n > 0 and
1 > ε > 0

P

(
sup
φ∈C

R (φ) − R̂ (φ)√
R (φ)

> ε

)
< 4 exp

(
h

(
1 + log

(
2n

h

))
− nε2

4

)
(9)

where h is the VC-dimension of C.
Note that (9) holds simultaneously for all φ ∈ C, namely φ∗

n, the ERM
function.

Let φ0 = arg infφ∈C R(φ). The additive Chernoff bound allows us to state
that with probability at least 1 − δ the following inequality holds true:

R (φ0) = inf
φ∈C

R (φ) ≥ R̂n (φ0) −
√
− log δ

2n

In order to obtain sample complexity bounds in terms of R(φ∗
n) we use:

Let C be a class of classifiers with VC-dimension h. Then for any P , n and
δ the following holds:

P
(
R(φ∗

n) − R(φ0) ≥ ε(n, δ, h)
)
≤ δ

with

ε (n, δ, h) =

√
− log δ

2n
+ 2

√√√√R(φ∗
n)
(
h
(
1 + log(2n/h)

)− log(δ/8)
)

n
(10)

Bounds for the perceptron can now be found since VC dimension is known in
this case: h = d + 1, see e.g. [1], [2], [3]. The sample complexity corresponding
to (10) can be numerically obtained by computing the value of n that guarantees
an estimation error ε(n, δ, h) below a given ε.

0.02 0.04 0.06 0.08 0.1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

0.045 0.05 0.055
2000

2500

3000

3500

4000

ε

n
L

Equation (10)
Equation (6)
Equation (7)

(a) R(φ∗
n) = 0.1, k = 4, d = 2

0.02 0.04 0.06 0.08 0.1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

0.045 0.05 0.055
6000

8000

10000

12000

ε

n
L

Equation (10)
Equation (6)
Equation (7)

(b) R(φ∗
n) = 0.1, k = 4, d = 10

0.02 0.04 0.06 0.08 0.1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

0.045 0.05 0.055
1

1.2

1.4

1.6
x 10

4

ε

n
L

Equation (10)
Equation (6)
Equation (7)

(c) R(φ∗
n) = 0.1, k = 16, d = 10

0.02 0.04 0.06 0.08 0.1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

0.045 0.05 0.055
1.5

2

2.5

3
x 10

4

ε

n
L

Equation (10)
Equation (6)
Equation (7)

(d) R(φ∗
n) = 0.4, k = 4, d = 10

Fig. 2: Sample complexity for the discrete and continous weights perceptron
(δ = 0.05).

Figure 2 shows the comparison of formulas (6) and (7) with the sample
complexity computed from formula (10) for several values of R(φ∗

n), k and d.
Consider that for d = 2, δ = 0.05, ε = 0.025 and R(φ) = 0.1, we wanted

to know at what value of k bound (6) is no better than the bound computed
from (10). Formula (10) gives the value n = 45083. Substituting in bound
(6), we obtain N2(k) = 5.58 × 1016 . Since N2(220000) = 3.54 × 1016 and
N2(260000) = 5.84 × 1016 we need b = 19 bits.

4 Conclusions

We presented sample complexity estimates of a perceptron with discrete weights
based on a new and exact result of hyperplane counting. The presented bound
performs much better than existing bounds, especially for low values of the
number of discrete steps, 2k + 1, and of the true perceptron error.

Using the bound on the rate of relative uniform convergence we derived a
sample complexity upper bound for the case of continuous weights, expressed
in terms of the true error rate, and proceeded to compare it with our bound.
We found that for not too high k (say, log2 k ≤ 19 bits of precision for d = 2)
our bound performs better. As before, the performance improves especially for
low values of the number of discrete weights, 2k + 1, and of the true perceptron
error.

We are currently investigating the asymptotic properties of our bound and
studying its generalization and practical application.

Appendix

The number of distinct hyperplanes in R
d with integer parameters in [−k, k]d+1

is given by [7]:

Nd(k) =
1
2

d∑
i=0

(
d + 1

i

)
2d+1−iMd+1−i(k) − 1

where Mn(k) is the number of relatively prime n−tuples1 which can be computed
using the formula

Mn(k) =
k∑

j=1

µ(j)
⌊

k

j

⌋n

where µ(j) is the Möbius function.

References

[1] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, 1999.

[2] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer-Verlag, 1996.

[3] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc, 1998.

[4] M. Vidyasagar. Learning and Generalization. Springer-Verlag, 2003.

[5] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learn-
ability and the vapnik-chervonenkis dimension. Journal of the Association for Computing
Machinery, 36(4):929–965, 1989.

[6] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Information and Computation, 100:78–150, 1992.

[7] C. A. S. Felgueiras. Counting hyperplanes with discrete coefficients, 2004.
http://www.fe.up.pt/∼casf/papers/counting.pdf.

[8] V. V. Petrov. Limit Theorems of Probability Theory. Oxford University Press, 1995.

1A n−tuple (a1, . . . , an) is relatively prime iff gcd(a1, . . . , an) = 1

