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Abstract. Currently the best algorithms for transcription factor binding
site prediction are severely limited in accuracy. In previous work we com-
bine random selection under-sampling with the SMOTE over-sampling
techniques, working with several classification algorithms from the ma-
chine learning field to integrate binding site predictions. In this paper, we
improve the classification result with the aid of Tomek links, either as an
under-sampling technique or to remove further noisy data after sampling.

1 Introduction

In this paper, we address the problem of dealing with imbalanced data in the
context of improving the identification of transcription factor binding sites on
sequences of DNA using different sampling techniques. There are many different
algorithms to search for binding sites [8] in current use. However, most of them
produce a high rate of false positive predictions. This is problematic for practic-
ing biologists who wish to validate these results - testing a prediction is costly.
In [8], we attempt to reduce these false positive predictions using classification
techniques taken from the field of machine learning.

One of difficulties in this work is due to the imbalanced dataset. The data
has two classes labeled as either binding sites or non-binding sites, with about
93% being non-binding sites. In previous work, we combine random selection
under-sampling and SMOTE over-sampling techniques. Here we extend this to
use Tomek links as an under-sampling method.

2 Problem Domain

One of the most exciting and active areas of research in biology currently, is
understanding how the exquisitely fine resolution of gene expression regulation
is at the molecular level. Cis-regulatory DNA elements form the nodes connect-
ing the genes in the regulatory networks, controlling many important biological
phenomena, and as such are an essential focus of research in this field.

One set of regulatory interactions are those between a class of DNA-binding
proteins known as transcription factors and short sequences of DNA which are
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bound by the proteins by virtue of their three dimensional conformation. Tran-
scription factors will bind to a number of different but related sequences. Unfor-
tunately, this complicates the problem of predicting the cis-regulatory elements
from out of the random background of the non-coding DNA sequences.

The current state of the art algorithms for transcription factor binding site
prediction are, in spite of recent advances, still severely limited in accuracy.
There is however good reason to believe that the predictions from these different
classes of algorithms are complementary and could be integrated to improve the
quality of predictions. In the work described here we take the results from the 12
aforemention algorithms and combine them into 1 feature vector. More details
about these 12 algorithms can be seen in [8]. We then investigate whether the in-
tegrated classification results of the algorithms can produce better classifications
than any one algorithm alone (see Figure 1).
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Fig. 1: The 12 algorithms give their own prediction for each sequence position
and one set of predictions is shown. The 12 results are combined as input to a
classifier.

3 Sampling Techniques for Imbalanced Dataset Learning

The data is a large sample of annotated yeast promoter sequences, and is ex-
tracted from the SCPD database'. It consists of 67782 12-ary real vectors each
with an associated binary label. In this work, we use the first about 2/3 as a
training set and the last 1/3 the test set. Amongst the data there are repeated
vectors, some with the same label (repeated items) and some with different la-
bels (inconsistent items). It is obviously unhelpful to have these repeated or
inconsistent items in the training set, so they are removed. After their removal,
the training set is still 89% non-binding sites.

Thttp://rulai.cshl.edu/SCPD/
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3.1 Sampling techniques

Since the dataset is imbalanced, the supervised classification algorithms will be
expected to over predict the majority class, namely the non-binding site category.
There are various methods of dealing with imbalanced data [5], classified as
algorithm-based and data-based methods. So far we concentrate on the data-
based method.

In [1], the authors evaluated 10 different samplings methods on 13 UCI imbal-
anced datasets using the C4.5 learning algorithm. They showed experimentally
that in general over-sampling methods provide more accurate results than under-
sampling methods. Moreover, they proposed that Tomek links [9] and Wilson’s
Edited Nearest Neighbour Rule (ENN) [10] can be used to clean up noisy data
after over-sampling with SMOTE |[3].

e Tomek links

Tomek links are links between 2 points (I;, ;) from different classes that
are closer together than any other pair from the 2 classes involving I; or I;.
The distance between the two patterns is d(1;, I;). If for any other pattern
I; in the dataset d(I;, I;) satisfies d(I;, I;) < d(I;, I;) or d(I;, I;) < d(I;,I;),
then the pair (I;, I;) is called a Tomek link . When Tomek links are used
as an under-sampling method, only patterns from the majority class are
removed. However, when used for removing noisy data, items may be
removed from both classes.

e ENN

ENN removes a pattern if the majority of its K nearest neighbours are not
in its class. Here we use K = 3.

e SMOTE

The aim of the SMOTE method is to synthetise new patterns by applying
majority voting to each of the attributes of the K-nearest neighbours of
each patterns in the minority class.

In [8] we apply Random selection (R) under-sampling for the majority class
(negative examples) and SMOTE (S) over-sampling for the minority class (posi-
tive examples), denoted by R-S. Here our aim is to improve classification results
using more competitive sampling techniques on the training set. We apply a new
combination of Tomek links and SMOTE for under- and over-samplings, respec-
tively, denoted by T-S. In order to investigate whether points located near the
decision boundary have a negative effect on training, or represent noise, we ad-
ditionally used Tomek links and ENN to remove data from both classes after
sampling, denoted by T-S(Tomek), R-S(Tomek), T-S(ENN) and R-S(ENN).

Since the data is a mixed set of binary and continuous features, we apply Het-
erogeneous Value Difference Metric (HVDM) [11] for calculating distances. The
actual ratio of minority to majority class is determined by the under-sampling
rate of the majority class. According to our previous experience, we set the final
ratio to a half, which has previously been shown to work well [8].
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4 Classifier Performance

To evaluate classifiers used in this work, we apply a range of standard reference
metrices defined in Table 1, where N is the number of true negative samples;
FP is false positive samples; FN is false negative samples; TP is true positive
samples.

Table 1: Definitions of several common performance metrics

- TP oy — P
Recall = (TP + FN) Precision = (TP + FP) °
_ 2-Recall-Precision _ __FP
F-Score = Recall+Precision ’ FP Rate = FP+TN °
aC = TP.TN-FN.FP

/(TP +FN)(TN+FP)(TP+FP)(TN+FN)

5 Experiments and Results

5.1 Experiments

We test these sampling methods on three learning algorithms: Single Layer
Networks (SLN) [2], the Support Vector Machine (SVM) [7] and Rules Sets
derived from C4.5 decision trees [6]. The SVM experiments were completed using
LiBSVM2. The C4.5-Rules experiments were undertaken using C4.5 software from
[6]. C4.5-Rules is a companion program to C4.5. It creates rules sets by post-
processing decision trees generated using the C4.5 algorithm first. The SLN
was implemented using the NETLAB toolbox®. All user-specified parameters
are chosen using cross-validations. The cross-validation performs similarly as
in [8]. These results are compared with the best base algorithm, which is the
one with the highest F-Score among the 12 base algorithms, majority voting,
weighted majority voting (see [8] for further details), and the SLN trained with
raw imbalanced data (the SVM and C4.5 give similar performance to the SLN).

5.2 Results

Table 2 shows that almost all F-Scores with R-S(ENN) and R-S(Tomek) are
improved when compared with each corresponding classifier on samplings from
R-S. The SVM with R-S(Tomek) samplings gives the overall best F-Score and
CC value, and also decreases the FP-Rate compared with simple R-S samplings.

2

http://www.csie.ntu.edu.tw/~cjlin/libsvin
3

http://www.ncrg.aston.ac.uk/netlab/
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Table 2: Performance metrics reported for the unfiltered possible binding sites
with inputs sampled using random selection for under-sampling and SMOTE for

over-sampling.

Input Classifier | Recall | Precision | F-Score | FP_Rate CcC
best Alg. | 0.400 0.222 0.285 0.106 0.226

No smapling MV 0.151 0.298 0.200 0.027 0.171
WMV 0.244 0.374 0.295 0.031 0.260

SLN 0.036 0.700 0.069 0.001 0.149

SLN 0.248 0.365 0.295 0.033 0.258

R-S SVM 0.305 0.326 0.315 0.048 0.266
C4.5-Rules | 0.274 0.287 0.280 0.052 0.227

SLN 0.298 0.340 0.318 0.044 0.270

R-S(ENN) SVM 0.318 0.323 0.321 0.051 0.270
C4.5-Rules | 0.287 0.306 0.296 0.049 0.245

SLN 0.253 0.389 0.306 0.030 0.273
R-S(Tomek) SVM 0.283 0.383 0.325 0.034 0.286
C4.5-Rules | 0.224 0.326 0.265 0.035 0.225

In addition, using Tomek links as a cleaning method decreases the FP-Rate com-
pared to no cleaning. McNeamar’s test [4] is taken to compare the classification
results of R-S with R-S(Tomek) on the SVM. The P-value is less than 0.0001.
The difference is considered to be extremely statistically significant.

Table 3 shows that SLN and C4.5-Rules with T-S(ENN) and T-S(Tomek)
samplings are better than their corresponding classifier with T-S samplings. But
the SVM performs better on T-S samplings considering all of F-Score, FP-Rate
and the CC value. In addition, comparing R-S (see Table 2) with T-S (see Table
3), it shows that Tomek under-sampling scheme gives better results than random
selection on the SLN and SVM.

It can be seen from Tables 2 and 3 that the best results of F-score and CC
are all obtained from the SVM. Overall, R-S(Tomek) and T-S working with the
SVM performs best considering F-Score, FP-Rate and the CC value together.

6 Conclusions

The first point to be made is that the Tomek links method improves performance
when used for under-sampling of the majority class with the SLN and SVM
classifiers. The second conclusion is that the Tomek links method is also useful
when used to remove noisy data after sampling, as random under-sampling and
SMOTE over-sampling techniques are used with the SLN and SVM classifiers.
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Table 3: Performance metrics reported for the unfiltered possible binding sites
with inputs sampled using Tomek link for under-sampling and SMOTE for over-

sampling.
Input Classifier | Recall | Precision | F-Score | FP_Rate CcC
best Alg. 0.400 0.222 0.285 0.106 0.226
No smapling MV 0.151 0.298 0.200 0.027 0.171
WMV 0.244 0.374 0.295 0.031 0.260
SLN 0.036 0.700 0.069 0.001 0.149
SLN 0.250 0.387 0.304 0.030 0.270
T-S SVM 0.294 0.369 0.327 0.038 0.285
C4.5-Rules | 0.240 0.238 0.238 0.059 0.179
SLN 0.307 0.348 0.326 0.044 0.280
T-S(ENN) SVM 0.332 0.303 0.317 0.058 0.263
C4.5-Rules | 0.278 0.254 0.265 0.062 0.207
SLN 0.265 0.397 0.318 0.030 0.284
T-S(Tomek) SVM 0.292 0.342 0.315 0.043 0.269
C4.5-Rules | 0.265 0.251 0.258 0.060 0.200
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