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Abstract. To reduce environmental pollution and increase efficiency of 

commercially available turbo engines it is essential to optimize. The suggestion 

made in this paper, is the use of evolution strategies and artificial neuronal 

networks (ANN) for turbo engine applications. Optimizations of the impeller and 

the combustion process are only two applications in the wide range of 

improvements. 

1 Simulation of turbulent flow with combustion 

The chemical reactions and the coupling with turbulent flow have to be performed at 

the same time during the simulation process. Therefore it is necessary to describe the 

interaction between the turbulent flow and chemical reaction with probability density 

functions (pdf) to conform to the stochastic nature of highly turbulent combustion 

processes. 
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Herein ψψψψ is the random vector corresponding to the vector of the ϕϕϕϕ=(T, Yi) with 

Temperature T and Mass Fraction of Species i, ( )�f ψ  denotes the density weight 

(Favre) averaged scalar pdf and S(ψψψψ) the chemical source term. The expression 

f(ψψψψ)dψψψψ is defined as the probability that ϕϕϕϕ(T(x,t),Yi(x,t)) is between ψψψψ-dψψψψ/2 and 

ψψψψ+dψψψψ/2 at time t and the location x in the flow field. A transport equation for the 

scalar pdf can be derived from the transport equation for ϕϕϕϕ and an expression for the 

pdf as a delta function and consists of the temporal change of f, mean convection and 

velocity fluctuation in physical space and molecular mixing and chemical reaction in 

scalar space.A stochastically equivalent system in a Lagrangian framework is used for 

the solution procedure. A so called stochastic particle ensemble which has the same 

initial distribution like the physical scalar values is used to solve the equation [4]. 

1.1 Complex Chemistry  

Prediction of emissions, like NOx- and CO-formation, depends on the chemical 

reaction mechanism used. Complex chemistry has more than 1000 reaction steps with 

over 200 species. The finite rate chemistry requires integration of ordinary differential 

equations (ODEs) of the form: 
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Where ir�  is the chemical reaction rate of species i, y  is the mass fraction vector 

of all species, T is the temperature and p is the pressure. It is in general not possible to 

solve the equations for all particles of the stochastic particle ensemble, which is the 

solution of the pdf, because of CPU-time limitations. The use of databases for storing 

chemical reactions is also limited. The exponentially growing requirements of storage 

capacities limit the so-called look-up tables [8]. Therefore the complex chemical 

reaction mechanism like the GRIMech3.0 [5] that consists of 325 reactions with 53 

species is trained in ANNs. So the evaluation of the complex chemistry with marginal 

CPU-time and memory resources is introduced. 

For given boundary conditions it is possible to calculate the reaction progress till 

the chemical equilibrium is reached. That means to calculate the progress in 

composition space of species in discretely time steps. For example with methane air 

combustion the brutto reaction is: 

4 2 2 2 2 2CH 2(O 3,76N ) CO 2H O 7,52N+ + → + + . 

1.2 Approximation of Complex Chemistry with the use of ANN 

The calculations of complex chemistry with ODEs were replaced by ANNs 

which configuration is given in table 1. 

Regarded Element Values 

momentum-term  0.2 

learning-rate  0.001-0,01 

structure (number of layers) (in-hidden-out) 15-2x20-1(a) 15-2x20-14(b) 

learning steps (a) 600000 (b) 700000 

activation function include output layer  tanh 

Table 1: Configuration of ANN, temperature (a), species (b) 
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Fig.  1: Temperature of equilibrium methane/air reaction, ANN prediction of tempe-

rature, variable starting temperature in the range of 1150 to 1250[K] 

 

Tests show that the structure of the ANNs and the number of neurons (>20) in 

hidden layers (>2) have no major impact on the results. The training data of the ANNs 

are the chemical stats for a given time step. The back-propagation learning algorithm 

with weight decay and momentum term was used. For the test case one ANN is 
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trained for prediction of the temperature and one further net for the concentration of 

the species. The input neurons are the temperature and the species concentrations. The 

ANNs predict the changes of the input values for the next time step. The so trained 

ANN calculates the output for temperature and mole fractions of the species with 

dt=0,001[s]. The output is taken as the input for the next calculation step. The test is 

finished, when there is no change in temperature and concentrations. The net out to 

given input of trained data series with starting temperature of 1150 to 1250[K] results 

in the net reproduction seen in Fig. 1. The net has learned the data and is able to 

reproduce the dataset with dynamic processing by getting the initial configuration at 

one time. 
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Fig.  2: Methane concentration of equilibrium methane/air reaction, ANN prediction 

of methane concentration, variable starting temperature in the range of 1150 to 

1250[K] 
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Fig.  3: Species of methane/air combustion, starting temperature 1150[K], compa-

rison of training data and net prediction 

 

Further the net is showing good results for the concentrations of methane with 

interpolated starting temperature of 1175[K]. By comparison the ANN shows a good 

prediction with a small time shift of about 0,003[s]. The concentrations of major 

species in Fig. 3 for 1150[K] starting temperature are showing the same time shift, but 

in summary good results in comparison training data and net prediction. As an 

example for species concentration the net prediction of methane is shown in Fig. 2. In 

the range of 1150 to 1250[K] the ANN is able to give good predictions. 
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1.3 Conclusion 

The computation of temperatures and concentrations in separate ANNs show 

better results than in former studies [6]. Maybe further optimisations can be achieved 

with separate ANN for major species and ANN for different time steps. 

2 Optimization of a Centrifugal Impeller using Evolution Strate-

gies and Artificial Neural Networks 

Evolution Strategies (ES) are used to optimize the geometry of an existing impeller to 

increase it’s isentropic efficiency. Starting from an existing impeller several 

geometries are created using mutation and recombination procedures. To evaluate the 

performance of new designed impeller geometries a compressible three-dimensional 

Reynolds-averaged Navier-Stokes Solver (RANS) is used. The implemented grid 

generator uses B-Spline-Curves which describe the camber lines at hub and shroud. 

Since many solutions are produced during the optimization process, the performance 

evaluations are very time expensive. Therefore the implemented optimization system 

is parallelized using MPI. Furthermore an ANN is discussed to use the knowledge of 

recent performance evaluations for performance predictions with the goal to speed up 

the optimization process. 

2.1 Centrifugal Impeller 

In Fig. 4(a) the centrifugal impeller is shown with the flow channel between two 

adjacent blades. The impeller blades can be described by their camber surfaces 

because they are considered as infinitesimal thin blades. One channel is sufficient 

because the optimization is done at a steady state working point and so periodic 

boundary conditions can be set [2]. 
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Fig.  4. Centrifugal impeller and simulated flow channel (a), Variegated points on 

camber surfaces of the impeller(b) 

 

During the optimization process with ES several geometries will be generated. In 

Fig. 4(b) the variable geometry of the flow channel is shown. The two camber lines 

along the points 1-2-3 and 4-5-6 can be described by the two cylindrical coordinates 

( , )Tzϑ . The z coordinate represents the rotational axis and R  stands for the radial 

coordinate. 

Each point on the camber line can be variegated by changing the z - coordinate 

and by adding ϑ∆  which describes the angle deviation to the reference impeller. The 

z - coordinate at impeller inlet and outlet is kept constant. Because the impeller is to 

be fit in an existing housing, the radial distributions are also kept constant. In this case 
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ϑ∆ 1 , ϑ∆ 2 , ϑ∆ 4 , ϑ∆ 5  as well as z2  and z5  are to be variable to generate different 

geometries for the optimization process using evolution strategies. 

2.2 Optimization using Evolution Strategies 

For the optimization of the centrifugal impeller one individual is described by a 

vector of six geometrical parameters. In the initialization process a number of N  

individuals by uniformly distributed stochastic variation of the geometrical 

parameters are produced [9]. In the recombination process information between the 

individuals will be exchanged. The mutation process is needed for exploration in the 

search space which is important for getting new knowledge as well as overcoming 

some local maxima of the objective function. After this the individuals has to be 

evaluated by the fully three-dimensional Navier-Stokes solver using the k-ε - 

turbulence model. In the selection process the best individuals of the formerly 

generated 2 N  individuals which consists of N  parents and N  children, N  

individuals with the highest efficiency are selected. This described procedure is 

passed through until a stopping criterion is fulfilled. 

2.3 Performance Prediction using Artificial Neural Networks 

A feed forward ANN is used with the view to use it as an approximation tool. Six 

input units, two hidden layers and one output unit were selected for the present 

approximation problem. The training pattern set consists of a six dimensional input 

vector u  and the one dimensional output vector t . The Resilient Backpropagation 

algorithm is used as a local adaptive learning scheme [11].  
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Fig.  5: Convergence history of the optimization. The first 50 individuals were used as 

training data set to predict the next 100 individuals 

 

In Fig. 5 the convergence history of the performed optimization with 

evolutionary strategies is shown. To train and test the networks the first 50 individuals 

which were created during the optimization process were used as a training data set to 

test the network. 15 units in two hidden layers are a good choice for the given 

approximation problem. After training procedure the next 100 individuals are to be 

used to get information about prediction quality of the network [7]. 

Concerning the 50 individuals which were presented to the network during the 

training phase the correlations of predicted and simulated efficiencies as shown in 
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Fig. 6 are very exact. The individuals which were not presented to the network (the 

following 100 individuals) are characterized by the rhombi in Fig. 6. 65% of the 

predictions have a deviation of less than 0.05% to the correct ones. 
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Fig.  6. Correlations of predictions and simulations 

2.4 Conclusion 

It could be shown, that evolution strategies are appropriated to optimize the 

geometry of a three dimensional centrifugal impeller. Furthermore an ANN was 

trained and tested to predict the isentropic efficiency. It has to be discussed how to 

integrate the network and its database into the optimization process to use the 

knowledge of performed simulations to speed up the optimization process. 
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