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Abstract. This paper deals with the problem of estimating an appro-
priate hand posture to grasp an object, from 2D object’s visual cues in a
many-to-many (objects,grasp) configuration. A statistical learning proto-
col implementing vector-valued regression is adopted for both classifying
the most likely grasp type and estimating the hand posture. An exten-
sive experimental evaluation on a publicly available dataset of visuo-motor
data reports very promising results and encourages further investigations.

1 Introduction: state of the art

This paper presents a machine learning approach to predict an appropriate hand
posture to grasp an object from two-dimensional visual cues. First a simple de-
scription of the object appearance, tolerant to 3D object rotation in the 3D
world, is extracted from an image of an unknown object. Second, without ex-
plicitly classifying the object, we associate it its most likely grasp type. Third,
we estimate a measurements vector describing the hand position for the selected
grasp most appropriate to the specific object. This final step implicitly embeds
the notion of object affordance, defined as a quality of an object that allows
an individual to perform an action. The whole procedure is data-driven and,
from the algorithmic stand-point, it is based on a state-of-the-art method for
vector-valued regression [1] that we use for both estimating the most probable
grasp types and predicting an appropriate hand posture.

Grasping classification is a keystone of many robotics applications. Differ-
ent methods have been proposed in the literature according to the amount of
prior knowledge available and the input data at disposal. Focusing on methods
that exploit visual information at some level, a rather common approach starts
from the computation of a full 3D model of the object to be grasped, with a
subsequent association of an appropriate grasp type. Machine learning meth-
ods have been applied to this setting — see for instance [2].A practical problem
with this approach, otherwise effective, is that often a 3D model of the object
is not available nor easy to compute. Methods based on 2D visual cues have
been proposed [3, 4]. Grasp classification is a loose definition that may refer
to associating a grasp type from a pre-defined taxonomy to an object, or may
be based on the explicit estimation of measurements modeling the grasp (e.g.,
describing the relative angles between joints). Our data-driven approach is re-
lated to the latter choice: it allows us to learn a hand configuration appropriate
to grasp a given object. A recent trend of robotic grasping relies on gathering
some understanding on the models for human grasping. In this work we refer to
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human grasp classification (i.e., our data are originated by grasping actions per-
formed by humans) and discuss how a possible grasp appropriate for an object
may be estimated before actual grasping occurs. If a mapping from human to
robot grasping is available, the proposed work may be applied to human-oriented
robotic grasp learning — see, for instance, [5].

The paper contributions are two-fold. First, a real world application of a
recently proposed algorithm for vector-valued regression that we apply on two
different levels of the abstraction process. Second, an effective grasp classifica-
tion strategy, based on visual cues, that allows to predict an appropriate hand
position before the actual grasping takes place. The perception-to-action-map
we consider is many-to-many: different objects can be grasped in the same way
and the same grasp can be applied to more than one object. This fact poses a
serious problem when, given a visual instance of an object, we want to estimate
the hand posture in order to grasp it, since we first have to determine which
grasp type to apply. The approach adopted in a simplified one-to-one frame-
work [6] to learn a vector valued model on all training examples will fail in this
case. The learning model would average the hand postures associated to the
same object, yielding a configuration that does not represent any actual grasp
(although it could carry information on the object volume).

We deal with this problem with a two steps procedure: first we apply the
vector-valued regression model to associate to a given image of an unknown
object a set of possible grap types. Then the most likely grasp is used to activate
a visuo-motor regression module trained on pairs (object, grasp) related to a
specific grasp type. This module returns an estimate of the hand position for the
given grasp type most appropriate for the (unknown) object under consideration.
This final step is implicitly related to the object affordance, that is, the same
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Fig. 1: Distance matrices between hand postures specific to a volunteer/subject.
For a given (subject, grasp type) pair the images show the color-coded nor-
malized distances between hand postures for different objects and repetitions.
The block structure of the matrices indicates the distinctive affordances of the
objects.

grasp type (say, tripodal) applied to different objects will originate different hand
positions, closely related to the object’s size and consistency, see Figure 1.
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The experimental analysis, based on a recently published multi-modal database
of grasping actions, the VMGdB [7], shows that (i) the results obtained in the
grasp type classification phase are very satisfactory, even with rather poor visual
representations; (%) preliminary results on the final regression phase speak in
favour of the proposed strategy, but a more principled error evaluation is needed.
Indeed, adopting conventional distance measures (e.g., the Euclidean distance)
to estimate the similarity between real and estimated grasps does not take into
consideration both the fact that, given a grasp, one or more fingers could be at
rest (or, else, could be in any position without affecting the effectiveness of the
grasp), as well as the presence of possible correlations among fingers. Ongoing
research is addressing this issue.

2 Experimental Set up and data preparation

The set-up we refer to considers grasping actions performed by humans, and
exploits multi-modal information: the object to be grasped is observed by a
video-camera that registers the object appearance, while the grasping action is
measured by a sensorised glove worn by the performing actor. The input data
we use are about grasping actions performed by 20 human volunteers, grasping
7 different objects in various ways from a set of 5 possible grasp types. Table
1 reports the 13 (object, grasp) actions included in the dataset. Each volunteer
repeats a given (object, grasp) action 20 times. Thus, the whole dataset contains
5200 grasping actions, where each pair is associated to 400 examples'.

Tripodal Spherical Pinch Cylindrical Flat
BALL 400 400 - - -
PEN 400 - 400 - -
DUCK 400 - 400 - -
PIG - - - 400 -
HAMMER - - - - 400
TAPE 400 400 400 - -
LEGO - - 400 - 400

Table 1: The (object,grasp) pairs included in the VMGAB [7] (see text).

The representation of visual information follows the solution proposed in [6]:
in each image a set of keypoints is randomly sampled, every keypoint is repre-
sented with a SIFT descriptor. The keypoints are then clustered and a visual
vocabulary is built. All images are divided in 4 quadrants and each quadrant
represented with respect to the vocabulary, with a nearest neighbour approach.
A frequency histogram of the visual features of each quadrant is built and, fi-
nally, the 4 histograms are concatenated, obtaining the final representation of
the image. We set the size of the vocabulary equal to 20 words. For what con-

LA detailed account of the data used is available [7]. Here we consider image frames ex-
tracted from the lateral view, cropped on the object region, and the 22-dimensional sensor
measurements acquired by the CyberGlove measuring the angles of the hand joints.
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cerns motor information we adopt a simple normalization of the measurements
acquired by the CyberGlove, dividing each element by 22 % 255.

Since the proposed approach is based on learning from examples, the available
5200 data are organized in training and test sets as follows. Each group of 400
grasp actions is divided in two, where 200 actions are used for testing. From the
remaining 200 actions we draw with no repetitions 10 actions for 10 times. We
thus obtain 10 different training sets of 130 examples, allowing us to check the
dependence of the solution with respect to the specific data choice, and a test
set of 2600 examples.

3 Statistical Learning Protocol

The learning system consists of a cascade of two different learning modules. Both
parts rely on a vector-valued regularization approach [1], which showed to be
very flexible as a regression tool as well as a classifier.
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Fig. 2: A schema of the two statistical learning modules. On the left the multi-
category classifier associating to a visual representation the most likely grasp
types; on the right the 5 vector-valued regressors (one per grasp type) associating
measurements of hand positions to visual representations.

Let us first describe some key points of regularization methods in the vector-
valued case. Following the classical schema of statistical learning, we assume to
be provided with a training set of input-output pairs {(x;,y;) : x; € Ry, €
R9}™ . Our aim is to estimate a function f : RP? — R? where p is the number
of features representing the input images x; and d is the dimension of the corre-
sponding output label y;. Assuming that the data is sampled 4.i.d. on RP x R?
according to an unknown probability distribution P(x,y), ideally the best esti-
mator minimizes the prediction error, measured by a loss function V(y, f(x)),
on all possible examples. Since P is unknown we can exploit the training data
only. Regularized methods tackle the learning problem by finding the estimator
that minimizes a functional composed of a data fit term and a penalty term,
which is introduced to favour smoother solutions that do not overfit the training
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data. In [8] the vector-valued extension of the scalar Regularized Least Squares
method was proposed, based on matrix-valued kernels that encode the similari-
ties among the components f¢ of the vector-valued function f. In particular we
consider the minimization of the functional:

S5 My~ £+ N 1)
i=1

in a Reproducing Kernel Hilbert Space (RKHS) of vector valued functions, de-
fined by a kernel function K. The second term in (1) represents the complexity
of the function f and the regularizing parameter A balances the amount of error
we allow on the training data and the smoothness of the desired estimator. The
representer theorem [9, 8] guarantees that the solution of (1) can always be writ-
ten as: f(x) = Y., K(x,x;)c;, where the coefficients ¢; depend on the data,
on the kernel choice and on the regularization parameter A. The minimization
of (1) is known as Regularized Least Squares (RLS) and consists in inverting a
matrix of size nd x nd. RLS is a specific instance of a larger class of regularized
kernel methods [10] extended to the vector case in [1]. More specifically — Fig.
3 — the first module consists of a multi-category classifier. The multiclass prob-
lem is transformed into a vector-valued regression problem by assigning to the
examples of each class a vector-valued coding. For instance, examples associated
with grasp 1 (tripodal) are given the coding (1,0,0,0,0). Given a new example,
the classifier will estimate the probabilities associated to each grasp type [1] and
return the most probable grasp type or the grasp types whose probability is
greater than a fixed threshold. The second module consists of 5 vector-valued
regressors, one for each grasp type. Each regressor is trained only on examples
that correspond to its specific grasp type. In the testing phase, a new visual
representation of a given object is associated to a grasp type by module 1, which
in turn activates the corresponding regressor in module 2. The final outcome is
a vector estimating the hand posture specific for that (object,grasp) pair.

4 Results

We tested the classification performance of the first module, by considering
whether the most probable grasp type returned by the multi-category classifier is
at least one of the possible grasp types associated to the given object. The aver-
age classification error over the 10 samplings of the training sets is 6.4% 4 1.5%.
A more detailed assessment of the grasp classifier is presented in Figure 3. The
r.o.c. curve on the left side is computed counting as false negative every grasp
whose probability is lower than the fixed threshold. Conversely, for computing
the r.o.c. curve on the right side, we consider a false negative only when none
of the probabilities corresponding to the actual grasp types are greater than the
threshold. In order to give a preliminary assessment of the overall system perfor-
mance, we used a simple Nearest-Neighbor (NN) procedure. For each example in
the test set, we computed its NN in the training set according to the Euclidean
distance between the estimated and the true hand postures. We then compared
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Fig. 3: R.O.C. curves evaluating the grasp classifier performance

the object and grasp classes of the NN with the true classes of the test example
under consideration. We obtain an object recall rate of 52.6%+4.2% and a grasp
recall rate of 50.8% =+ 1.8%. These results are better than a random guess (14%
and 20%, respectively), but suggest that a more appropriate measure is needed
to evaluate the regression module.
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