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Abstract. In many cases, a dataset can be clustered following sev-
eral criteria that complement each other: group membership following one
criterion provides little or no information regarding group membership
following the other criterion. When these criteria are not known a pri-
ori, they have to be determined from the data. We put forward a new
method for jointly finding the complementary criteria and the clustering
corresponding to each criterion.

1 Introduction

Consider, for example, a large set of images of blue and silver Mercedes and
Toyota cars. Here, color and brand are two categorical variables that complement
each other in describing the car images. Suppose that neither the variables
nor their values are known a priori, but each image is represented by several
automatically extracted low level visual features. Can one discover, by analyzing
this data, the presence of two complementary categorical variables, each of them
having two possible values? This would allow, for example, to improve image
database summarization and to automatically find relevant search criteria.

We address this problem for data in a vector space, by looking for comple-
mentary clusterings in subspaces of the full space. Two clusterings of a same
dataset are complementary if cluster membership according to one clustering
provides little or no information regarding cluster membership according to the
other. Each clustering corresponds to a categorical variable, with each cluster
representing one different “value” of that variable. We assume here that for each
categorical variable there is a linear subspace of the full space where the data
points group in such a way that each cluster is one value of that variable. To
separate these variables, we further consider that they should be independent
on the available data. Obviously, not every dataset will show such combinatorial
structure, where each cluster in the full space is the intersection of clusters found
in different subspaces. Also, automatically found clusterings may not correspond
to “meaningful” categorical variables (like color or brand).

To find arbitrarily oriented subspaces with complementary clusterings (see
e.g. Fig. 1) we consider derived variables and group them into disjoint subsets on
the basis of their mutual information (MI). Since we aim to find complementary
clusterings, we compute the entropy (used for measuring MI) on a clustering of
the projected data and add cluster quality to the optimization criterion.

The next section briefly reviews some existing work that can be related to
the problem we aim to solve. Our method for finding complementary clusterings
is described in Section 3. The evaluation in Section 4 on a synthetic dataset and
on a real database shows that this method can produce good results.
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Fig. 1: Original data (left) and separated complementary clusterings (right).

2 Related work

Subspace clustering has received significant interest, motivated by cases where
data points are related in different ways in different subspaces of the description
space (see [1]). These methods aim to jointly uncover clusters and subspaces
of the data space where each cluster is best described. A few recent methods
attempt to find complementarity relations between the resulting subspaces. The
proposal in [2] relies on an iterative algorithm performing at each iteration a
clustering followed by the selection of the most discriminant subspace using
linear discriminant analysis (with the labels resulting from the clustering) and
then by a projection on the orthogonal residual subspace. An appropriate choice
of the number of clusters appears to be critical. Two different methods are
suggested in [3]. One extends the k-means algorithm in order to simultaneously
perform clustering in several subspaces and make these subspaces orthogonal.
The other method improves the fitting of a factorial density model with an
extension of Expectation-Maximization. Both methods require prior knowledge
of the number of subspaces and of the number of clusters in each subspace.

To identify complementary categorical variables, we could look for statis-
tically independent components in the data. Several methods for performing
independent subspace analysis were proposed, including multidimensional in-
dependent component analysis (MICA) [4], tree-dependent component analysis
(TCA) [5] and independent variable group analysis (IVGA) [6] (see [7] for an
agglomerative version, AIVGA). TCA aims to find a linear transform and a
tree-structured graphical model such that the transformed data fits the model
well. Each connected subgraph in the model (each tree in the forest) defines
an independent subspace. TCA is quite general but has a high computational
complexity. IVGA attempts to determine subsets of initial variables describing
the data such that mutually dependent variables are grouped together while
mutually independent (or weakly dependent) ones end up in separate subsets.
IVGA and AIVGA have a lower complexity than TCA, but only consider the
initial variables. The methods for finding independent subspaces cannot directly
address our goal of identifying complementary clusterings, because they consider
data points and not clusters. This often leads to subspaces where data has highly
skewed rather than multi-modal distributions, which does not support cluster-
ing. Furthermore, two subspaces that are independent at the level of clusters
can be dependent at the level of data points (see e.g. Fig. 1, right).
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3 Proposed method

To be able to find complementary clusterings in arbitrarily oriented subspaces,
the method suggested below is built upon TCA [5]. Consider x = (x1, . . . , xm)�

a multivariate random variable in R
m having the probability distribution p(x).

TCA is looking for a model of p(x) that consists in an invertible matrix W and
a tree T (V, E) of vertices V and edges E such that, for s = Wx, the distribution
of s factorizes in T , i.e. p(s) =

∏
i∈F p(si)

∏
j∈U p(sj |sπj

), F being the founder
nodes and U = V\F . If T is a forest (i.e. has several disconnected trees)
rather than a spanning tree, then each tree of the forest corresponds to an
independent subspace. To allow for such cases, a penalty for dense forests is
employed. Let D(p||q) denote the Kullback-Leibler divergence between two pdfs
p and q, I(xu, xv) = D(p(xu, xv)||p(xu)p(xv)) be the pairwise MI between two
variables xu and xv and I(x1, . . . , xm) = D(p(x)||p(x1) · · · p(xm)) be the m-fold
MI between the components of x. It is shown in [5] that the best TCA model
for p(x) is found by minimizing

J(x,W, T ) = I(s1, . . . , sm)−
∑

(u,v)∈E
I(su, sv) (1)

with respect to W and T . But p(x) is unknown, so the criterion in (1) must be
replaced by an empirical contrast function. Since I(s1, . . . , sm) =

∑
u H(su) −

H(s), H(s) = H(x) + log |detW|, I(su, sv) = H(su) + H(sv) − H(su, sv) and
H(x) does not depend on W or T , an appropriate contrast function is

JMI =
∑
u

Ĥ(su)− log |detW| −
∑

(u,v)∈E

[
Ĥ(su) + Ĥ(sv)− Ĥ(su, sv)

]
(2)

For TCA, the entropies in (2) are obtained by estimating (1D and 2D) data den-
sity using e.g. kernels. To optimize JMI with respect to W and T , the algorithm
proposed in [5] alternates minimization steps with respect to each variable, the
other being fixed. To minimize with respect to T , a greedy algorithm for the
maximum weight forest problem is employed (see [5]). If s = Wx is whitened,
then the minimization with respect to W can be performed by iteratively se-
lecting pairs of indices (i, j) and allowing the rows i, j to vary (rotations in the
spanned subspace) while keeping fixed all the other rows. To avoid poor local
minima, a coarse exhaustive search is first performed, then refined optimization
by gradient descend starts from the coarse minimum.

The proposed method follows the TCA approach but, to find complementary
clusterings rather than generic independent subspaces, it has two important
changes (see also Algorithm 1). First, cluster membership for a clustering in
one subspace should provide as little information as possible regarding cluster
membership for a clustering in another subspace. So, while the MI is still given
by (2), the entropies are estimated on clustered data; the resulting cost is denoted
JMIC . Second, only a good clustering can be interpreted as a categorical variable
(with each cluster corresponding to one value of that variable). So, a clustering
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quality term JCQ is added to the MI term JMIC in the contrast function

JCC = JMIC + αJCQ (3)

with α controlling its impact. Together with the clustering algorithm, the JCQ

measure employed for clustering quality should avoid overfitting and penalize
poor clustering. The choice of a value for α will depend on the clustering algo-
rithm and on the corresponding selection of JCQ. Note that the value of α is
not critical if the dataset does show good complementary clusterings.

Algorithm 1 Identification of complementary clusterings.

Require: dataset X, dense forest penalty w0, step size φ, threshold θ
initialize newScore = ∞, W: random with whitened s = Wx
repeat
Score = newScore
for each pair (i, j), j < i, of rows of W do
for each rotation of angle kφ, k ∈ {1, . . . , 180

φ }, of rows (i, j) of W do
find T using greedy maximum weight forest algorithm
compute and store JCC(k)

end for
J∗
ij = mink JCC(k)

if J∗
ij < newScore then

newScore = J∗
ij

W = arg J∗
ij

end if
end for

until Score − newScore < θ
perform final clustering in each resulting subspace
return transformed data S = WX, newScore, complementary clusterings

To estimate the entropies in JMIC , clustering has to be performed at every
step of the optimization in algorithm 1, so a fast solution is needed. A simple
grid-based method was employed here; it considers adjacent bins having a density
above a threshold ρ to be part of the same cluster. Bin size and ρ allow to control
complexity, so JCQ can simply count the number of clusters in 1D and 2D.

The use of clustering raises several issues with respect to the optimization
process. First, during the coarse exhaustive search by rotations in the subspace
spanned by rows i, j, the number of clusters obtained for the 1D projections is
likely to vary. To make the corresponding values of MI (computed on clustered
data) comparable, they have to be normalized; for every coarse rotation angle,
the value computed for MI is divided by the maximal value that could be ob-
tained with the same numbers of clusters. Also, the contrast function is now
discontinuous when W varies, so gradient descent can no longer be applied; re-
fined search is like coarse search, but with a smaller step size. A careful analysis
shows that the complexity of Algorithm 1 is O(m3n), where m is the original
dimension of the data and n the number of data points.
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Fig. 2: Result and cost function for TCA (left) and proposed method (right).

Fig. 3: Images of the 21 objects in the reduced COIL database. Objects on a
same line have similar color, objects on a same column have similar shape.

4 Experimental evaluation

This method was tested on computer-generated data and also on a real dataset.
Fig. 2 shows a comparison, on a simple 2D example, between TCA [5] and our
method that aims to find complementary clusterings. TCA outputs two very
skewed components, while the method introduced here finds one component
showing good clustering and another component on which the projected data is
Gaussian. Even in this simple case the contrast function is not smooth and has
several local minima, so the coarse exhaustive search cannot be avoided.

The real dataset we considered is a subset of 21 classes (called below “re-
duced COIL” database) selected from COIL-1001 so as to reveal two rather
complementary categorical variables, one corresponding to object color and the
other to shape (see Fig. 3). Each class of COIL-100 has 100 images of the same
object taken from different angles. The global description of each image, com-
bining color, texture and shape information, is represented by a 7-dimensional
vector. The basic example given in the introduction is inspired by this dataset.
As shown in Fig. 4, the proposed method is able to find two complementary
clusterings that correspond to the two categorical variables, i.e. object shape
(with 5 possible values) and respectively color (also 5 possible values).

1http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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Fig. 4: Results on the reduced COIL database: the 2 complementary clusterings
(left and middle, high MI between 1D projections within each subspace) and
combinatorial structure along 2 complementary dimensions (right, very low MI).

5 Conclusion

Finding complementary categorical variables that describe a set of data (if such
variables exist) can be useful for e.g. summarizing image databases or revealing
relevant search criteria. To address this problem, we suggest a method that
aims to find arbitrarily oriented subspaces showing complementary clusterings,
without knowing the expected number of subspaces or of clusters within each
subspace. This method is based on tree-dependent component analysis but, to
find complementary clusterings rather than generic independent subspaces, the
mutual information is estimated on clustered data and a clustering quality term
is included in the contrast function. The experiments show that the proposed
method does output the desired results on simple synthetic data and on a real
dataset. Future work should address the scalability to high-dimensional data.
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