
Ensemble Usage for More Reliable
Policy Identification in Reinforcement Learning

Alexander Hans1,2 and Steffen Udluft2

1- Ilmenau University of Technology – Neuroinformatics & Cognitive Robotics Lab
P.O. Box 100565, D-98684 Ilmenau – Germany

2- Siemens AG, Corporate Technology – Intelligent Systems & Control
Otto-Hahn-Ring 6, D-81739 Munich – Germany

Abstract. Reinforcement learning (RL) methods employing powerful
function approximators like neural networks have become an interesting
approach for optimal control. Since they learn a policy from observations,
they are also applicable when no analytical description of the system is
available. Although impressive results have been reported, their handling
in practice is still hard, as they can fail at reliably determining a good
policy. In previous work, we used ensembles of policies from independent
runs of neural fitted Q-iteration (NFQ) to produce successful policies more
reliably. In this paper we evaluate the approach on more problems and
propose to form ensembles from successive iterations of a single NFQ run
as a computationally cheap alternative to completely independent runs.

1 Introduction

Reinforcement learning (RL) [1] deals with optimal control problems, where
often the notion of an agent interacting with an environment is used. In each
step, the agent observes the state of the environment and executes an action,
thereby causing a transition to a successor state. Along with each transition a
reward is given, a scalar value evaluating that transition. The agent’s aim is to
find a policy, mapping each state to an action, that maximizes the expected sum
of future rewards. If the environment can be formulated as a Markov decision
process (MDP) M := (S, A, P, R), where S is the set of states, A the set of
actions, P : S×A×S �→ [0, 1] the transition probabilities, and R : S×A×S �→ �

the reward function, the optimal policy π maximizes the value function

V π(s) = max
a

∑
s′

P (s′|s, a) [R(s, a, s′) + γV π(s′)] , (1)

where γ is the discount factor. The optimal policy’s Q-function is also a solution
to the Bellman optimality equation

Q∗(s, a) =
∑

s′
P (s′|s, a)

[
R(s, a, s′) + γ max

a′
Q∗(s′, a′)

]
. (2)

When the MDP’s parameters are known, this equation can be used to itera-
tively determine Q∗ (starting from an arbitrary Q), from which the optimal
policy follows as π∗(s) := arg maxa Q∗(s, a). However, this is only feasible for

165

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

environments featuring discrete state and action spaces with a small number
of state-action pairs. If the state space is continuous or the number of state-
action pairs is large, one has to resort to function approximation to overcome the
storage problem and achieve data-efficiency by generalizing to afore unobserved
state-action pairs.

Neural fitted Q-iteration (NFQ) [2] is an RL method that achieves data-
efficiency by employing neural networks and re-using all observations, i.e., per-
forming batch-mode RL. While [2] reports very positive results, problems have
been reported as well [3]: often after a number of iterations a near-optimal pol-
icy is found, but after a few more iterations the policy degrades, only to become
near-optimal again a few iterations later. This is partly due to effects like chat-
tering [4] and systematic overestimation of Q-values [5]. As a result, it is hard
to know what iteration’s policy to use as final solution.

In previous work we suggested to use ensembles to address this issue [6].
Ensembles have been used successfully in machine learning to improve the pre-
diction quality by combining several individual predictors (e.g., [7]). The smaller
the correlation of the errors of the ensemble members, the greater the expected
improvement. To introduce diversity and thereby cause errors to be less corre-
lated, methods like bagging [8] and boosting [9] have been suggested. So far only
few contributions exist that employ ensembles for RL. Wiering and van Hasselt
used ensembles of quite different algorithms trained with the same data for dis-
crete MDPs in an online setting [10]. Each algorithm determines its own policy,
the final policy is determined from the individual policies, e.g., using majority
voting. Ernst et al. used ensembles of regression trees in a fitted Q-iteration ap-
proach [11]. Instead of using only one regression tree to represent the Q-function
in each iteration, they used an ensemble of trees (random forest).

In the present work we evaluate the ensemble usage proposed in [6] for further
environments. In addition to ensembles composed of policies from individual
NFQ runs, we propose and evaluate the usage of ensembles composed of policies
from different iterations of a single NFQ run.

2 Neural Fitted Q-Iteration

NFQ [2] is an instance of the fitted Q-iteration (FQI) [11] approach. FQI it-
eratively finds a solution to the Bellman optimality equation (2) just like dy-
namic programming, but instead of storing the Q-function tabularly, a function
approximator is used. See Alg. 1 for a summary of FQI. In NFQ, the func-
tion approximator is a neural network (multi-layer perceptron). Due to the
excellent generalization properties of neural networks, it is possible to produce
near-optimal policies very data-efficiently [2].

For our NFQ implementation we use a neural network with an input layer,
two hidden layers, and an output layer. For all neurons in the hidden and
output layer we use the hyperbolic tangent as activation function, the input
layer neurons use the identity. We initialize the Q-function as ∀(s, a) ∈ S × A :
Q0(s, a) := 0, i.e., in the first step we learn the rewards. The inputs are scaled

166

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

Algorithm 1: The basic FQI algorithm. Q̂k is a function approximator,
Q̂k(s, a) gives the value of Q̂k evaluated with input (s, a).

Input: observation tuples (si, ai, ri, s′
i), γ

Result: Q̂∗

begin
Q̂0 := 0
i := 0
while the desired precision is not reached do

inputj := (sj , aj)
targetj := rj + γ maxa Q̂i(sj

′, a)
Q̂i+1 := train(input, target)
i := i + 1

return Q̂i

to have a mean of zero and a standard deviation of one, the targets are scaled
using t̂i := ti/(1.05 · tmax), where tmax is the maximum absolute target. The
hyperbolic tangent limits the output of the network to lie within [−1, 1]. This
helps to avoid the “rising Q problem” [5], while scaling with 1.05 ·tmax allows the
network to produce the desired output without having to use very large weights
in the connector between the second hidden and the output layer.

3 Improving Reliability through Ensembles

To address the problem of policy degradation, in [6] we combined several com-
pletely individually learned Q-functions to an ensemble policy using majority
voting and Q-averaging. It was shown that ensemble policies are more often
successful than individual ones, especially when using majority voting. How-
ever, for an improvement of reliability it might not even be necessary to do
completely independent NFQ runs. Instead, one could use an ensemble of poli-
cies from a number of final iterations. E.g., assuming the Q-function converges
after 100 iterations, one could use Q100, Q100+1, Q100+2, . . . , Q100+n to form
an ensemble. In theory, those Q-functions should be identical. In practice with
NFQ, however, they differ slightly, causing occasionally inferior policies.

We will evaluate the following methods:

1. Ensembles of successive iterations of converged NFQ runs.

2. Calculating ensembles from independent NFQ runs.

4 Experiments

We conducted experiments using the pole balancing, cart-pole, and wet-chicken
benchmarks. For all domains we used random exploration to generate the ob-
servations.

167

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

4.1 Benchmark Domains

Pole Balancing In the pole balancing benchmark a pole attached to a cart
must be kept in upright position by applying forces to the cart. Starting from
an upright position, in each time step the agent can choose to apply −50 N, 0 N,
or +50 N to the cart. The actions are corrupted by uniformly distributed noise
n ∈ [−10, 10] N. Therefore, the trivial policy of always applying 0 N does not
lead to success, even though initially the pole is in upright position. The two-
dimensional state space consists of the pole’s angle θ and the angular velocity θ̇.
A reward of 0 is given if θ ∈ [− π

2 , π
2]. If the pole leaves this area a reward of

−1 is given and the episode ends. The time constant used is Δt = 0.1 s, the
discount factor is set to γ = 0.95. A policy is considered successful if it is able
to repeatedly balance the pole for at least 3,000 steps.

To generate observations of the MDP, we used episodes of random explo-
ration. When applying actions randomly, the pole falls (and therefore the episode
ends) after approximately six steps. We used data sets of 25 episodes (≈ 150
observations/transitions). We generated 50 data sets and used those to generate
policies with the different methods. To assess a policy’s quality, it was run 100
times for at most 3,000 steps.

Cart-Pole The cart-pole problem is an extension of the pole balancing bench-
mark. In addition to the balancing task, the agent must keep the cart within
a certain range, while the highest reward is achieved when keeping the cart in
the middle of the track. Therefore, the state space is extended by the cart’s
position x and its velocity ẋ. We used the same settings as were used in [2]
(Δt = 0.02, γ = 0.95), except for the reward function. We used a distance
based reward measure with added bonus for the target region and punishment
for states leading to failure:

rt :=

⎧⎨
⎩

−|xt| − |θt| + 1 − 2x2
t /0.052 + x4

t /0.054 if |xt| < 0.05 ∧ |θt| < 0.15,
−|xt| − |θt| − 10(|θt| − 0.2) if |θt| > 0.2,
−|xt| − |θt| otherwise.

Observations were generated starting from random positions with zero ve-
locities and x ∈ [−2.3, 2.3], θ ∈ [−0.2, −0.2]. For evaluation, the position was
randomly initialized with x ∈ [−1, 1]. An episode was stopped when |x| > 2.4
or |θ| > 0.25. A policy’s quality is reported as average immediate reward from
100 episodes with a maximum length of 3,000 steps. The results reported are
averages of 40 completely independent trials, i.e., using 40 distinct data sets.

Wet-Chicken In the wet-chicken benchmark [12] a canoeist paddles on a one-
dimensional river with length l = 20 and flow velocity v = 1. At position x = l
of the river there is a waterfall. Starting at position x = 0, the canoeist has
to try to get as near as possible to the waterfall without falling down. If he
falls down, he has to restart at position x = 0. The reward increases linearly
with the proximity to the waterfall and is given by r = x. The canoeist has the

168

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

Pole Cart-Pole Wet-Chicken
25 10,000 30,000 500

single 24 −0.35 ± 0.07 −0.140 ± 0.040 12.9 ± 0.2

successive
iterations

2 24 −0.33 ± 0.07 −0.191 ± 0.062 12.7 ± 0.2
5 25 −0.32 ± 0.08 −0.089 ± 0.029 13.4 ± 0.2

10 31 −0.21 ± 0.04 −0.146 ± 0.043 13.3 ± 0.2
independent
runs

5 30 −0.11 ± 0.02 −0.030 ± 0.005 13.3 ± 0.2
10 34 −0.07 ± 0.02 −0.021 ± 0.002 13.3 ± 0.2

combined

5 × 2 32 −0.09 ± 0.02 −0.026 ± 0.003 13.4 ± 0.2
5 × 5 31 −0.07 ± 0.01 −0.022 ± 0.002 13.5 ± 0.2

5 × 10 34 −0.05 ± 0.01 −0.019 ± 0.002 13.4 ± 0.2
10 × 2 32 −0.07 ± 0.01 −0.020 ± 0.002 13.4 ± 0.2
10 × 5 32 −0.06 ± 0.01 −0.019 ± 0.001 13.4 ± 0.2

10 × 10 33 −0.05 ± 0.01 −0.017 ± 0.001 13.4 ± 0.1
Table 1: Experimental results using policies from a single NFQ run and ensem-
ble policies from a number of final successive iterations from single NFQ runs,
completely independent runs, and combinations of both (the first number de-
notes the number of independent runs, the second the number of final successive
iterations). For the pole benchmark the numbers of policies able to balance
for 3000 steps are reported (out of 50 trials), for cart-pole and wet-chicken the
average immediate reward is shown (from 40 and 100 trials, respectively).

possibility to drift, to hold the position, or to paddle back. River turbulences
of size s = 2.5 cause the state transitions to be stochastic. Thus, after having
applied the canoeist’s action to his position (also considering the flow of the
river), the new position is finally given by x′ = x + n, where n ∈ [−s, s] is a
uniformly distributed random value. For our experiments, the discount factor
was set to γ = 0.975.

We used 100 data sets containing 500 observations each. To evaluate a pol-
icy’s performance, we executed it 100 times for 1000 steps each and determined
the average immediate reward. The results are averages of 100 trials using the
100 distinct observation sets.

4.2 Results

Table 1 shows the results of the techniques applied to the three benchmarks. For
the pole balancing problem using an ensemble of successive iterations helps to
increase policy quality. Although the results here do not indicate a significant
performance gain when using policies from completely independent NFQ runs,
we believe that in general this leads to better results, as policies from indepen-
dent runs are less correlated than those from successive iterations of the same
run. Moreover, the best result reported in [6] (39/50 successful trials using 40
ensemble members) cannot be matched here even with much larger ensembles,
because those contain highly correlated policies.

In both cart-pole settings using ensembles of successive iterations of a single

169

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

run does not lead to a significant improvement of performance. On the other
hand, combining policies from different runs does give a significant performance
gain. Combining policies from successive iterations of independent NFQ runs
improves the performance even further.

The improvement for the wet-chicken benchmark is not that obvious.
Nonetheless, the combination of successive iterations of individual NFQ runs
tends to improve the policy performance.

5 Conclusion

In this paper we extended previous work [6] by further evaluating the usage
of ensembles in an NFQ context. Additionally, we proposed and evaluated the
usage of policies from successive iterations from a single NFQ run to form an
ensemble. In summary, the results from all experiments presented here as well as
in [6] indicate that RL with NFQ does always benefit from ensemble usage. When
performing multiple independent NFQ runs is too expensive, one can as well use
a number of final iterations from single NFQ runs, which gives an ensemble “for
free”. In recent years, multi-core processors have become standard for commodity
hardware and this trend continues. Ensembles constitute an extremely simple
way of exploiting the potential of such platforms, since executing multiple NFQ
runs in parallel is trivial. Instead of hand-tuning the algorithm for the problem
at hand, ensembles allow for more robust and reliable policy identification—we
therefore believe that they are an important step on the way toward autonomous
RL, needing only little or no intervention of a human expert.

References
[1] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.
[2] M. Riedmiller. Neural fitted Q-iteration–first experiences with a data efficient neural re-

inforcement learning method. In Proc. of the 16th European Conf. on Machine Learning,
2005.

[3] T. Gabel and M. Riedmiller. Reducing policy degradation in neuro-dynamic program-
ming. In Proc. of the European Symposium on Artificial Neural Networks, 2006.

[4] G.J. Gordon. Reinforcement learning with function approximation converges to a region.
Advances in neural information processing systems, 2001.

[5] S. Thrun and A. Schwartz. Issues in using function approximation for reinforcement
learning. In Proc. of the 1993 Connectionist Models Summer School, 1993.

[6] A. Hans and S. Udluft. Ensembles of neural networks for robust reinforcement learning.
In Proc. of the 9th Int’l Conf. on Machine Learning and Applications, to appear.

[7] T. Dietterich. Ensemble methods in machine learning. Multiple classifier systems, 2000.
[8] L. Breiman. Bagging predictors. Machine learning, 24(2), 1996.
[9] Y. Freund, R. Schapire, and N. Abe. A short introduction to boosting. Journal of the

Japanese Society for Artificial Intelligence, 14, 1999.
[10] M.A. Wiering and H. van Hasselt. Ensemble algorithms in reinforcement learning. IEEE

transactions on systems, man, and cybernetics, 38(4), 2008.
[11] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning.

Journal of Machine Learning Research, 6, 2005.
[12] V. Tresp. The wet game of chicken. Siemens AG, CT IC 4, Technical Report, 1994.

170

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

