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Abstract. We present a neurd network for the prediction of rewards in a
conditioning model. It is based on two noisy-or and one noisy-and nodes and
update rulesinspired from BANNER technique. In specific cases, we show that the
computation is smilar to RescorlaWagner's equation, which inspired many
computational modelsin the domain of conditioning.

1 Conditioning

The objective of thiswork isto define the behaviors of robots according to the theory
of conditioning. Animal conditioning occurs when a stimulus is repeatedly presented
before a reward or a punishment. Pavliov' experiments with dogs are well known and
classical or operant conditioning have been studied for a long time [3]. However,
despite several decades of works on conditioning models, it is ill difficult to
establish all the rules that govern the properties of conditioning. Most approaches are
based on the origind model proposed by Rescorla and Wagner [5] in which
conditioning is characterized by associative strengths. Modification of the associative
strength of a stimulus X after a new trial is given by equation (1). The increase is
proportional to the salience of X (parameter o) and the efficiency of conditioning
(parameter B). A is the maximum strength and Vroa is the sum of all associative
strength of the present stimuli.

V)?Jrl = V)? + oy IB(/i _VT?JtaI ) (1)

The associative strength of a given simulus can be interpreted as the degree to which
a reward is predicted. Another important model has been proposed by Klopf with
further considerations by Grossberg [1], [2]. In these moddls, stimuli were represented
by neurons and associative strengths were determined by synaptic weights. Other
authors followed the same principles [1], [5], [6]. Sutton and Barto also proposed a
model of classical conditioning based on well known reinforcement learning
techniques (TD model, 1987 and 1990 [7]). Despite dl these works, all models suffer
from specific drawbacks. We propose in this paper a new prediction system for
conditioning and its application in robotics. It is based on a specific neura network
architecture corresponding to the nodes of a Bayesian network. The method is
explained in Section 2. Some results are then presented in Section 3. In Section 4, we
describe a simple application of our model with robots. We finaly conclude with the
perspectives of this work.
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2 Proposed model

2.1 Description of the network

Stimuli are defined as perceptual eventsin the representation of robots. In asimplified
world, there is only one reward (or only one unconditioned stimulus, which predicts
the reward with probability 1) and the objective is to determine if one or several
observed stimuli predict the reward event in the next few seconds or eventually if they
inhibit it. Our neural network is defined by three levels (see Fig. 1). In thefirst level,
the output of the neurons corresponds to the observation of the different stimuli. In the
second level, the output of the neurons correspond to the probability of obtaining a
true value for a hidden Boolean variable. There are two hidden variables. Each of
them corresponds to a Noisy-Or node of the conditiona probabilities of the first level
(see next section). The first one can be considered as the probahility of triggering the
real but hidden cause of the reward event and the second one corresponds to the
probability of triggering a hidden inhibitory mechanism that prevents the action of the
cause and the observation of the reward. That second variable is necessary to allow
inhibitory conditioning [4]. Inhibitory conditioning indeed occurs if the conditioned
response is aways observed after the detection of a given stimulus X (reward
expected) but is never observed if Y is present at the same time. If a single noisy-or
node had been used, the reward would have been expected if one of the causa
mechanisms had been present. That specific problem has already been identified in
previous work [6]. The neuronal output of the third level corresponds to the
probability of observing another event. It is defined as the probability of presence of
the cause with absence of the inhibitory mechanism. Inhibitory conditioning is thus
easly integrated in the model. In general, the last event is the reward, but not
necessarily.
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Fig. 1: Neural network mode.

2.2 Neural computation

Pear| proposed the Noisy-Or to simplify the problem of updating many conditional
probabilities in a Bayesian network [4]. We propose to implement his method as
follows. Firgt of al, we define P(Hy|X) as the conditional probability of obtaining
H;=true during a limited period of time (for instance 5 seconds) following the

148



ESANN 2011 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

observation of event X. In the neural network, synaptic weights correspond to
conditional probabilities. For ingance the conditional probability P(H.X) is the
synaptic weight between node P(X) and P(Hy). If X1..X,, are possible stimuli events
predicting H;=true, in a Noisy-Or node it is sufficient to have an estimate of all
P(Y [X;) to compute P(Y |X1..X,) [4]. For the second level, the output of the neuron is
therefore determined by the output of the neurons of the first level and their
associ ative wel ghts according to equation (2).

P(H,) =1-T] @~ P(H,|X,)P(X,)) 2

A similar equation holds for the computation of P(Hy). The difference only appears
during the updates of the synaptic weights (eg. the conditional probabilities). At the
last level of the network, P(Reward) is computed according to equation (3).

P(Reward) = P(H,)(1-P(H,)) (3)

2.3 Updaterules

Asit is suggested in the BANNER method proposed by Ramachandran, the update of
the conditiona probabilities can be performed according to a rule that minimizes the
mean square error [8]. However, since we do not want to stop the robot during
learning, we propose to take into account each error and to update the probabilitiesin
an incremental way. Let us consider the error for a given trial. There are two cases. If
the reward is observed after a given set of stimuli, the global error is 1-P(Reward) and
if no reward is observed the global error is P(Reward). Since the computation of
P(Reward) involves a multiplication between P(H;) and P(H,), the propagation of the
error to the second level is trivial. If Xy is an observed stimulus, the update of the
conditional probabilities P(Hy|Xy) and P(Hy[Xy) can be easily performed using a
gradient descent technique, which is very similar to the one proposed in BANNER,
see equations (4) and (5).

Err(P(Hl)) = Pcorr(Hl)_ P(Hl) (4)
Peorr(Hy) is the correct value of P(H;) considering only the current observations. It is
equal to 1if the reward has been observed and 0 otherwise.

- _o QBT (BE(H)
Pt+1(H1|xk)—Pt(H1|Xk)+ 0{ 9P (H,) j
Pa(Hy X, ) = R(H,|X ) +—a [T@- R (H, X)) Vu(X,)) (5)

where t is the time according to a given discretization, o is a learning rate smaller
than 1, Vu(X;) isalogical variable equal to 1 if X; has been observed and O otherwise.
There is an increment or a decrement of the probability according to the sign of the
error. A similar equation holds for P(H,|Xy) with a symmetric error. The problem is
that we are dealing with probabilities and even though the update rule takes into
account the partia derivative of the error and evoluates in the appropriate slope there
is no guarantee that the probability would remain in the range [0..1] depending on the
value of the learning parameter. We therefore propose taking into account the
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maximum modification of the probability. If the update rule increases the probahility,
the maximum local error is 1-P(H|X\) and if it is decreasing, it is equal to P(Hy|Xy).
We propose to multiply the right term by this maximum local error so that the update
is always a fraction of the maximum allowed modification. The new equations are
therefore (6)(7) and (8)(9), respectively, when the reward is observed and when it is

not.

Pt+1(H1|Xk) = Pt(H1|X k)+ , H(l_ Pt(H1|Xi)VU(Xi)) (6)
Pt+1(H2|Xk) = Pt(H2|Xk)_0‘2Pt(H2|Xk)H(1_ Pt(H2|Xi)VU(Xi))
(7) izk

Raa(Hy|X,) = R(H,[X,) =R (HyX ) [ TA= R (H X)) Vu(X})) @
Pt+1(H2|Xk) = Pt(H2|Xk)+0‘4 H(l_ Pt(H2|Xi)VU(Xi)) €)

Note that in equations (6) and (9) the new term does not explicitly appear becauseit is
now included in the product. Remark: We suggested that a predicted reward event
would be expected during a fixed period of time after a stimulus event. We therefore
have to memorize al events during that period. However, if areward is observed at a
given timet, the traces of the stimulus and the reward events might still be present at
time t+1, t+2 and so on depending on time discretization. If thisis the case, we have
to apply equations (6) and (7) at every step. This is in fact an interesting property
because the increase of the conditiona probability is inversely proportional to the
interval between the stimulus and the reward and that property has been observed in
the domain of animal conditioning. Conversely, if the reward event is absent during
all the fixed period, equations (8) and (9) are applied only once and the trace of the
stimulus event isforgotten.

1 P(H1)

05

ED 150 180

B0 120 Teg il

Fig. 2: Conditioning experiment: during the first 60 trials a stimulus event occurs
and after 3 seconds areward is presented. The probability of reward after that
stimulusis equal to P(H1). Then during the next 60 trials, the stimulusiis still

presented but not the reward. The probability of reward after that stimulus
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decreases below 0.5. Thereis extinction of conditioning. Finally, during the last 60
trias, the stimulus and the reward are presented (reacquisition of conditioning).

3 Reaults

Some results are presented Fig. 2. The following parameters have been used:
0l1=0:2=0.002, 0:3=04=0.008, time discretization: 0.2s, fixed period: 5s It is
important to note that similar curves would be obtained with different parameters. If
we consider that conditioning is acquired if the probability of the reward exceeds 0.5,
our experiment illustrates a conditioning followed by its extinction and finaly its
reacquisition at a faster rate. Other conditioning experiments are correctly described
with the proposed model. Let us consider the blocking effect. Conditioning with a
given stimulus Y is blocked or takesalong timeif Y always follows a stimulus X and
X is dready a stimulus that predicts the reward. In equation (6), P(H1/Y) does not
increase much because P(H./X) is close to 1 and the product is proportional to 1-
P(H/X). Latent inhibition is characterized by an inhibition of conditioning if the
stimulus has already been observed without the reward. In our model latent inhibition
is observed because P(H,) increases before P(H;). Our model can account for many
conditioning properties. More importantly, the main advantage of our model is that it
is not necessary to reset the parameters before a new experiment. The conditioning
with a given stimulus can be extinguished, reacquired, combined with another
stimulus at al time. The model can therefore be used in roboticsin real time.

4 Application in robotics

We implemented our modd in Java for Lego Mindstorms robots. The robot is a
simple rover equipped with ultrasonic sensors for measuring distance to an obstacle
and a RFID sensor. There are three action modes. In the normal mode, the robot
randomly chooses an action among several ones, such as "go forward 20 cm", "turn
45° east”, "turn 45° west". If an obstacle is detected at a distance less than 20 cm, the
robot switch on ared light and enters a reactive mode. It waits 2 seconds, then makes
a 180° turn and return to the norma mode. The obstacle plays the role of an
unconditioned stimulus. In the real world, stimuli are typically sounds or visua
features and the problem of stimulus recognition is known to be hard. A RFID sensor
has been used to simplify interactions with the robot. If an emitter is presented in
front of the sensor, itsradio frequency isimmediately identified with 100% certainty.
In our experiments stimuli are different emitters. Each time a stimulus is detected
(and identified), itstrace is memorized during 5 seconds. Meanwhile, if an obstacleis
detected, the conditiona probability of observing an obstacle after the detection of
that stimulus is updated according to our model. We adapted the learning rates such
that conditioning is functional after 3 similar situations. As a consequence, the fourth
time the same stimulus is detected, the robot enters a conditioning mode, switch on a
red light and goes foward during 5 seconds waiting for the detection of the obstacle. If
it is detected before the end of the 5 seconds, it enters areactive mode. If the obstacle
is not detected it returns to the norma mode. Experiments have also been conducted
with several stimuli. Extinction, reacquisition, latent inhibition, blocking and
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inhibitory conditioning (obstacle never expected after a given stimulus) have been
successfully observed.

5 Conclusion

Our model has been briefly described. There are many other interesting results that
could be discussed. The application of our model to the real world of robots is
currently investigated. A promising perspectiveis the use of the model for thetraining
of robots like the training of animals to do simple tasks such as sit down, jump, go
and take an objet and so on. This is possible if the mode is used for operant
conditioning. Since conditional probabilities can take into account any event, it is
easy to consider the actions of the robots as possible events that would predict
rewards or punishments.
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