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Abstract. This paper presents a combination of Self-Organizing Map
(SOM) approach and navigation functions in the Traveling Salesman Prob-
lem with segment goals where paths between goals have to respect obsta-
cles. Hence, the problem is called multi-goal path planning. The problem
arises from the inspection planning, where a path from which all points
of the given polygonal environment have to be “seen”. The proposed ap-
proach demonstrates applicability of SOM principles in such problems in
which SOM has not yet been applied.

1 Introduction

The multi-goal path planning is a problem of finding a collision-free path for
visiting a set of goals in a robot workspace [1]. This problem can be formulated
as the Traveling Salesman Problem (TSP) in which a sequence of goals visits
requested to be found such that the total length of the path is minimal. Self-
organizing map (SOM) has been already used in the TSP and several approaches
have been proposed, for examples surveys in [2, 3]. However, these approaches
are focused on the Euclidean variant of the problem in which distances between
neurons’ weights and goals are efficiently computed as the Euclidean distances
between two points. In the multi-goal path planning, obstacles have to be taken
into account and geodesic distances have to be used otherwise poor solutions are
found. Although only (to the best of our knowledge) approaches [4, 5] deal with
obstacles, the approaches demonstrate applicability of SOM in the multi-goal
path planning. The first one uses supporting graph and the second approach
utilizes approximate shortest path between neuron’s weights and goals presented
to the network during the adaptation.

From the performance point of view, it is known that combinatorial ap-
proaches from the operational research domain provide better solutions of the
TSP in less computation time than SOM based approaches [2]. The gap be-
tween heuristics and SOM is even wider in problems with obstacles as the path
among obstacles has to be determined, which is obviously more computationally
demanding. For TSP solvers working with a graph, all shortest path between
goals can be precomputed and stored in a distance matrix. In the case of a
polygonal representation of the problem, the paths can be found by Dijkstra’s
algorithm on a complete visibility graph [6]. Even though SOM can be used on
such graph, its performance is worse than heuristic approaches.
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In this paper, we consider more general problem in which goals are sets of
points rather than single points. This problem arises in the inspection planning
in a polygonal map W where one can ask to find a path such that all points of W
will be seen from at least one point of the path [7], e.g. finding an inspection
path in a search and rescue mission [8]. Dividing the free space of W into a
set of convex cells, the path can be found as a solution of the TSP where goals
are diagonals of the map division. A diagonal is a line segment connecting two
vertices of W such that it connects two nonadjacent vertices and it is contained
in W . An example of such segments is depicted in Figure 2a.

A variant of the TSP with goals represented as sets can be found as the TSP
with neighborhoods (TSPN) in literature [9]. The goal is not a single point but it
is a set of (possibly infinite) points, which means that the distance matrix cannot
be easily precomputed, because too many eventualities are possible. In general,
the TSPN is APX-hard and cannot be approximated within a factor 2, unless
P=NP [10]. The difficulty of the TSPN is that the problem is not only to find
a sequence of goals’ visits, but also to select the most appropriate point of the
set representing the goal. To address this difficulty, we propose a combination
of the SOM based TSP solver with navigation functions used for determining
the path from a point (neuron’s weights) to the goal. The proposed approach
demonstrates how SOM can be combined with motion planning techniques used
in robotics. Moreover, the approach also shows that SOM based TSP solvers
can be easily extended for more general problems, where they provide additional
features over combinatorial heuristics.

The paper is organized as follows. The proposed approach is based on well
known SOM adaptation schema, and therefore it is only briefly described in
the next section. The navigation function is introduced in Section 3 as well as
harmonic potential function used. The main contribution of the paper, the adap-
tation procedure for segment goals, is presented in Section 4. Finally, concluding
remarks are presented in Section 5.

2 Self-Organizing Map for Routing Problems with Point
Goals

Self-organizing Map (SOM) can be considered as a two-layered competitive learn-
ing network that has two dimensional input vectors and an array of output units.
An input vector i represents coordinates (gi1, gi2) of the goal gi and neurons’
weights νj1, νj2 can be interpreted as coordinates of the node νj in a plane.
The output units are organized into a unidimensional structure and the con-
nected nodes form a ring, which evolves in the problem domain according to the
self-organizing adaptation procedure.

Although many variants of SOM algorithms for the TSP have been proposed,
we consider the algorithm [11] as the main adaptation schema in this paper.
A distance of a node to the presented goal is used for selection of the winner
node, which is then (together with its neighbouring nodes) updated in order to
be closer to the presented goal according to the neighbouring function f , i.e.
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the new node position is ν′j = νj + μf(G, l)(gi − νj), where μ is the learning

rate. The neighbouring function used is f(G, l) = exp(−l2/G2) for l < 0.2m and
f(G, l) = 0 otherwise, where G is called the gain parameter, l is the distance (in
the number of nodes) of a node from the winner measured along the ring, andm is
the number of nodes in the ring that is set to m = 2.5n, where n is the number of
goals. G is decreased after each complete presentation of the goals to the network
according to the gain decreasing rate α, i.e. G = G(1 − α). The initial value
of G is set using the formula G0 = 0.06 + 12.41n and learning and decreasing
rates are set to μ = 0.6 and α = 0.1. After the complete presentation of all
goals to the network, each goal has distinct winner node (due to the inhibition
mechanism) and the final tour over all goals can be found by traversing the ring.

3 Navigation Function - Artificial Potential Field

The SOM algorithm relies on determination of the winner node using a node-goal
distance. The winner is then moved towards the goal along the path to the goal.
The problem of finding the node–goal path in W can be considered as a path
(or motion) planning problem, thus any planning algorithm can be used. Here,
we use a navigation function as a planning algorithm. The navigation function
is basically a function providing a direction to the goal for a robot at any point
in W and the goal will be reached if the robot follows the direction [12].

(a) (b) (c)

Fig. 1: Paths provided by navigation functions. (a) paths to a segment goal; (b)
paths to a polygonal goal; (c) connection of segment goals.

The Artificial Potential Field (APF) technique [13] can be used as a navi-
gation function. A potential function is a differentiable real-valued function f
from R

m → R and its gradient ∇f(q) points in the direction of increasing f .
A harmonic (potential) function satisfying Laplace’s equation ∇2f(q) = 0 has
to be used as a navigation function to avoid local extrema [14]. A solution of the
equation can be found numerically by the finite difference method or the finite
element method (FEM). Particularly FEM is useful for polygonal environments,
because finite elements can be represented by a triangular mesh. A combination
of the Dirichlet boundary condition specifying f at the goal boundary and the
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Neumann condition specifying ∇f at obstacles is preferred [15].
The advantage of the APF (particularly FEM) is an ability to find a nav-

igation function for a goal with an arbitrary polygonal shape, only boundary
conditions need to be specified, see Figures 1a, 1b. Thus, a path to a goal with
a general shape can be found as a sequence of points with desired smoothness
computed from the sampling of the gradient in a particular point to the goal.

4 Self-organizing Adaptation with Segment Goals

Although the TSP with segment goals is similar to the point goals, the graph
based algorithms for the TSP cannot be directly used. The main issue is that a
destination point at the segment depends on the position at the previous segment
in the tour. If the position of a vertex (representing the segment in the graph) in
the tour is changed, the path can be completely different, which is a significant
difference to the point goals where changes are only local.

The issue is not the case of the SOM adaptation, because the tour can be
represented by the ring of nodes itself. The winner node is selected according
to its distance to the goal, which is determined from the path provided by a
navigation function. Such paths are also used to move nodes towards the goal.
The adaptation procedure is terminated if each winner node is closer to the goal
than the given distance δ. The final tour can be constructed from the winner
nodes to the segment goals, because winner nodes can be negligibly close to the
segment, e.g. δ ≥ 10−5 m, and they represent particular points of each goal.

A tour (not only for negligibly close winners) can be constructed by the
following procedure. Assume two winner nodes νa and νb associated to the seg-
ments sa and sb, see Figure 1c for an example. Due to the inhibition mechanism
these two winners are distinct νa �= νb. For each goal a navigation function is
computed in advance. A path from the node ν to the segment goal s is deter-
mined by the navigation function gs(ν) and the endpoint of the path at s can be
denoted as end(gs(ν)). Then, the goals sa and sb can be connected as follows.

1. Determine endpoints of paths from νa and νb to the segments sa and sb;
ϑa = end(gsa(νa)) and ϑb = end(gsb(νb)).

2. Two paths connecting sa and sb can be constructed:

(a) a path from ϑa to sb defined by gsb(ϑa) and a part of the segment sb
from the endpoints end(gsb(ϑa)) and ϑb,

(b) a path from ϑb to sa defined by gsa(ϑb) and a part of the segment sa
from the endpoints end(gsa(ϑb)) and ϑa.

3. The shorter path of these variants is selected and goals sa and sb are
connected.

For a sequence of three goals sa, sb, sc paths are firstly determined for each pair
(sa, sb) and (sb, sc). After that, parts of the segments (collision free diagonals)
defined by the particular endpoints are added to the length of the path from sa
to sc over sb. The final tour over all goals is found by the same schema. This
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proposed procedure provides only approximate solution of the shortest path con-
necting given sequence of segment goals. The main aspect of the SOM approach
is that a winner node becomes very close to the end point at the associated
segment. Thus a point of the segment is selected during the adaptation, which
is done naturally as nodes are moved towards the segments.

An example of nodes adaptations is depicted in Figure 2. In the first five
sub-figures nodes are not connected, which is not necessary for adaptation, the
black lines represent paths from the current winner nodes to the particular goals
found by the navigation functions. The last sub-figure shows the final found
path determined by the aforementioned procedure.

(a) segment goals (b) step 5 (c) step 17

(d) step 33 (e) step 47 (f) found solution

Fig. 2: An example of nodes evolution during adaptation.

5 Conclusion

The presented combination of the adaptation schema with navigation functions
demonstrates advantages of SOM approach for more general variants of the TSP.
At first, the approach is able to deal with obstacles, which has been noticed as a
difficulty for SOM approaches. The other benefit is a straightforward extension
for problems with general goals where SOM has not been used yet.
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Regarding the inspection planning, the advantage of the proposed approach is
that a found path visiting diagonals of the convex partition guarantees inspection
of the whole W .

Future work in application of SOM principles in multi-goal path planning
problems includes consideration of polygonal goals and additional motion plan-
ning techniques that will enable computation of paths among obstacles in high
dimensional configuration space.
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