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Abstract. Determining the number of components in dimensionality
reduction techniques is still one of the open problems of research on data
analysis. These methods are often used in knowledge extraction of mul-
tivariate great dimensional data, but very often the number of compo-
nents is assumed to be known. One of the classical methods to estimate
this dimensionality is based on the Principal Components Analysis (PCA)
eigenvalues [1, 2]. However, this method supposes that the model is lin-
ear and the signals are Gaussian. To be able to consider non-linear and
non-Gaussian cases, we propose in this paper “measure based methods” as
nearest neighbors dimension and correlation dimension. The comparaison
between the three methods is evaluated both with simulated data and with
real biological data, which are gene expression time series. The main goal
of this study is to estimate the minimum number of factors.

1 Introduction

The estimation of the intrinsic dimension constitutes a preliminary treatment
for dimensionality reduction. The dimensionality reduction is divided into two
principal domains: the Factorial Analysis (FA) and the Low-Dimensional Rep-
resentation (LDR). The FA includes all techniques which allows to estimate a
reduced number of factors able to represent the data as conformly as possi-
ble. This number of factors appears to be the intrinsic dimension of the data.
Amongst these FA techniques, one can quote Principal Component Analysis
(PCA) [1], the Independent Component Analysis (ICA) [3] and the Linear and
General discriminent analysis (LDA-GDA). Whereas the LDR aim to find a
lower dimensional space which preserves some properties of the observed data.
Amongst these methods, one can quote Isomap [4, 5], Laplacian Eigenmaps [6]
or Diffusion Maps [7]. A good survey of the existing methods can be found in
the paper of T. Lin [8]. In this paper, we propose to compare three methods of
estimating the dimension used by FA and LDR. These methods are the classical
Principal Component Analysis Eigenvalues proposed by [1, 2]. The two other
methods are the nearest neighbors method introduced the first time by K.W.
Pettis [9] and the correlation dimension introduced by A.M. Farahmand [10, 11].
The book [12] gives the principal details for non-linear dimensionality reduction.

∗This work is a part of ERASYSBIO-C5Sys European project “circadian and cell cycle
clock systems in cancer” http://www.erasysbio.net/index.php?index=272
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This paper is structured as following. Firstly, we introduce the nearest neighbors
and correlation dimension techniques. Secondly, we test the different methods
of dimension estimation on simulated data. Finally, we use the methods on real
biological data representing expression of genes.

2 Estimation of intrinsic dimension using nearest neigh-
bors and correlation dimension

In the problem considered in this paper, we consider T realisations g(1), . . . , g(T )

of a M -dimensional random vector g = (g1, . . . , gM ) ∈ R
M . These realisations

represent the observed data and R
M is the space of observations. The support

of the distribution of g is not necessarily R
M but a subspace which is locally

C1-diffeomorph to a vectorial space R
N . Such a subspace, denoted M, is called

C1-differentiable manifold and the intrinsic dimension of the data is N . We call
“parameterization” of a N -dimensional manifold an application ϕ from R

N to
M which realizes a local diffeomorphism. Finally, the N -dimensional random
vector f = (f1, . . . , fN) defined through the parameterization g = ϕ(f ) is called
“source-vector” and the composantes f1, . . . , fN are called “factors” or “sources”.
The model is linear if ϕ is a linear application. We propose in this section three
methods to estimate the intrinsic dimension of the data which appears to be
the dimension of the manifold where the data lie on. In the linear case, PCA
consists in computing the covariance matrix of the observations g and to find its
biggest eigenvalues. However, PCA eigenvalues method fails to consider the non-
linearity. For the non-linear case, correlation dimension and nearest neighbors
method are based on the following argument. Suppose that the random vector
g has a density g → p(g) whose the support is the N -dimensional manifold
M. Consider B(x0, r) the ball of center x0 and radius r in the manifold M,

then P (g ∈ B(x0, r)) = rN
∫
z∈B(0,1)

p(rz + x0)dσ(z)

︸ ︷︷ ︸
η(x0,r)

, where σ is the Lebesgue

measure of M defined from its volume form. For small values of r, one can
suppose that η(x0, r) is a constant η0, consequently:

log (P (g ∈ B(x0, r))) = N log(r) + log(η0). (1)

Correlation dimension consists then in estimating P (g ∈ B(x0, r)) by:

CT (r) =
2

T (T − 1)

∑
1≤i<j≤T

1‖g(i)−g(j)‖<r, (2)

where ‖.‖ is the Euclidian norm of RM . The dimension is estimated using least-
square method by:

N̂corr =
Cov (log (CT (r)) , log(r))

Var(log(r))
, (3)
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where r = (r1, . . . , rJ) is a sample of small values of r. In the experiments we
choose (r1 = 0, r2 = 0.001, r3 = 0.002, . . . , rJ = 1).
Whereas, in the nearest neighbors technique, we fixe a number K of neigh-
bors. If x0 is one of the realisations of g and rK is the distance between x0

and its furthest neighbor, then P (g ∈ B(x0, rK)) � K
T . Similarly, if we con-

sider a number K
2 of neighbors, P

(
g ∈ B(x0, rK/2)

) � K
2T . From the relations

log
(
K
T

) � N log(rK) + log(η0) and log
(

K
2T

) � N log(rK/2) + log(η0), we deduce

log(2) � N log
(

rK
rK/2

)
, consequently we estimate N by:

N̂near =
T log(2)

T∑
i=1

log

(
rK(g(i))

rK/2(g(i))

) . (4)

3 Comparaison of the dimension estimation methods

In all experiments presented in this section, we simulate 1000 samplings of
data. For this, we use four kinds of data. In all cases, the data lie on a
bi-dimensional manifold embedded to R

5, consequently, the observations are
realisations of a random vector g = (g1, . . . , g5). In the first model (Linear
and Gaussian), the observations come from a linear combination of Gaussians
variables f1 and f2. More exactly g1 = 0.8f1 + 0.2f2, g2 = 0.2f1 + 0.8f2,
g3 = 0.5f1 +0.5f2, g4 = 0.9f1 +0.1f2 and g5 = 0.1f1 + 0.9f2, and f1 and f2 are
independent and centered-normalized Gaussian variables. In the second model
(Linear and Non-Gaussian), we keep the same linear relations between sources
and observations, but f1 and f2 are independent and uniformly distributed on
[0, 1]. In the third (Non-Linear and Gaussian) and last experiments (Non-Linear
and Non-Gaussian), the relation between sources and observations are g1 =
exp(−f1) cos(f2), g2 = exp(−2f1) (cos(f2) + 1), g3 = exp(−2f1) (3 cos(f2) + 5),
g4 = exp(−f1) (6 cos(f2)− 2) and g5 = exp(−3f1) (cos(f2)− 2). In the third ex-
periment, the sources are Gaussian whereas in the last experiment, the sources
are uniformly distributed on [0, 1]. For the estimation of dimension, we use 4
methods: PCA eigenvalues, correlation dimension, nearest neighbors dimension
with respectively 4 and 10 neighbors. In PCA, we impose to recover 90% of the
variance.
In the last series of experiments, we consider 3 sources f1, f2, f3. In the first and
the third experiments, the sources are independent and normalized-zero mean
Gaussian and in the second and last experiments, the sources are independent
and uniformly distributed on [0, 1].
In the linear models, which are the first and second experiment, the relations
are g1 = 0.8f1 + 0.1f2 + 0.1f3, g2 = 0.1f1 + 0.8f2 + 0.1f3, g3 = f1

3 + f2
3 ,

g4 = 0.9f1 + 0.05f2 + 0.05f3 and g5 = 0.05f1 + 0.9f2 + 0.05f3 and in the non-
linear models, they are g1 = exp(−f1) cos(f2), g2 = exp(−2f1) (cos(f2) + f3),
g3 = exp(−2f1) (3 cos(f2) + 5f3), g4 = exp(−f1) (6 cos(f2)− 2f3) and g5 =
exp(−3f1) (cos(f2)− 2f3). The Table 2 presents the estimation of dimension
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Linear
Gaussian

Linear
Non-Gaussian

Non-linear
Gaussian

Non-linear
Non-Gaussian

PCA 2 2 1 1
Correlation dimension 2 (1.98) 2 (1.76) 2 (1.62) 2 (1.69)
Nearest neighbors (4) 3 (2.59) 2 (2.43) 2 (2.39) 2 (2.46)
Nearest neighbors (10) 2 (2.35) 2 (2.20) 2 (2.21) 2 (2.09)

Table 1: Dimension estimation results. On brace: estimated value and without
brace: the rounding value.

for the different cases. In PCA, we impose to recover 99% of the total variance
of the data.

Linear
Gaussian

Linear
Non-Gaussian

Non-linear
Gaussian

Non-linear
Non-Gaussian

PCA 3 3 2 2
Correlation dimension 3 (2.84) 2 (2.29) 2 (1.90) 2 (2.08)
Nearest neighbors (4) 3 (3.11) 3 (3.03) 3 (2.80) 3 (2.76)
Nearest neighbors (10) 3 (3.18) 3 (2.92) 3 (2.59) 2 (2.39)

Table 2: Dimension estimation results. On brace: estimated value and without
brace: the rounding value.

One can see that if the relation is not linear, then PCA eigenvalues gives poor
results compared to the two other methods. Moreover, the nearest neighbors
method seems to give better results in the non-linear case than correlation di-
mension. The Table 2 shows that the correlation dimension method is very
sensitive to the model and with three sources, the results are as poor as those
got with PCA eigenvalues. However, it can be related to the choice of the sam-
pling of the radius r. The Tables 1 and 2 show also that the distribution of
the data on the manifold has an influence on the quality of estimation. The
model influences the number of neighbors in the nearest neighbors method. In
the experiments with two sources, chosing 10 neighbors gives better results than
with 4 neighbors; whereas with three sources, we get better results by chosing 4
neighbors.

4 Experimentations with real biological time series

In this section, we test the proposed methods on the real biological data. These
data represent the expression of genes taken at different times. The expression of
a gene is the amount of RiboNucleic Acid (RNA) used for the transcription of the
specific gene. In the first experiment, we measure 9 gene expressions, which are
the expressions of three metabolism genes “CE2”, “UGT1A1” and “TOP1” in
three different organs “liver”, “colon” and “ileum” . The size T of the sampling
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is of 72 samples. Even if these samples come from 3 classes and for each class
from 3 mice measured every 3 hours (8 samples over 24h), we used all these
samples without distinction on classes and mice. Concerning, the estimation
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Fig. 1: Scatterplot of the genes data and of the five estimated sources, g1: CE2,
Liver; g2: UGT1A1, Liver; g3: TOP1, Liver; g4: CE2, Colon; g5: UGT1A1,
Colon; g6: TOP1, Colon; g7: CE2, Ileum; g8: UGT1A1, Ileum; g9: TOP1,
Ileum. f1, . . . , f5: sources.

of dimension, PCA with 90% of variance gives 5, correlation dimension gives
3.43 and nearest neighbors with 4 neighbors gives 5.31, so the dimensionality of
the observed data seems to be equal to 5. In Figure 1, we have estimated the
sources using Factorial Analysis, which supposes that the mixing is linear. It
can be interesting also to study the data organs by organs separately and genes
by genes separately. The Table 3 represents, in its left part, the dimensionality
analysis when we observe the three genes separately in the Liver, in the Colon
end in the Ileum. In the second part of the table, we observe for the three genes
separately, their expressions in the three organes. For instance, the first column
“Liver” represents the dimension estimation when the observations are g1 (CE2,
Liver), g2 (UGT1A1, Liver) and g3 (TOP1, Liver), and for the fourth column
“CE2”, the observations are g1 (CE2, Liver), g4 (CE2, Colon) and g7 (CE2,
Ileum).
As we can see from the Table 3, one can reduce the dimensionality of the three
dimensional data representing genes’ expressions to 2 if the measure have been
realized in “Colon” and in “Ileum”. However, the genes expression seems to
be less dependent in the liver. If we study the correlation between organs in
regard of the three genes separetely, it appears to have two factors in regard of
UGT1A1 and TOP1.
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Liver Colon Ileum CE2 UGT1A1 TOP1
PCA 3 2 2 3 2 2

Correlation
dimension

3 (2.88) 2 (2.39) 2 (2.15) 3 (2.76) 2 (2.28) 2 (2.23)

Nearest
neighbors (4)

2 (2.39) 2 (2.29) 3 (2.31) 3 (2.36) 3 (2.41) 2 (2.30)

Table 3: Dimensionality analysis in the three organs separately and for the three
genes separetely.

5 Conclusion

In this paper, we have presented two non-linear methods of estimation of di-
mension. We have tested the efficiency of these methods both on simulated and
biological data. The real data are more complex: there are missing and outliers
data. Also, for now, we applied the method on only a homogeneous set of data
(Gene expressions). We need to extend these methods for the cases where we
want to apply them to heterogeneous data.
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