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Abstract. Learning a classifier from a training set that contains labelling

errors is a difficult, yet not very well studied problem. Here we present a

model-based approach that extends multi-class quadratic normal discrim-

inant analysis with a model of the mislabelling process. We demonstrate

the benefits of this approach in terms of parameter recovery as well as im-

proved classification performance, on both synthetic and real-world multi-

class problems. We also obtain enhanced accuracy in comparison with a

previous model-free approach.

1 Introduction

In the context of supervised learning, the classifier is constructed using training
examples. The traditional setting assumes that the labels of training exam-
ples are all correct. However, in reality it is very difficult to guarantee perfect
labelling, e.g. because of the subjective nature of the labelling task, lack of
information, or communication noise. In such situations mislabelling occurs.

Classical supervised learning simply ignores the presence of label noise. Some
assume that the algorithm is capable to withstand the influence of label noise
[1]. Often, such assumption does not hold, though (see [2, 3, 4, 5] for examples).

Existing approaches to this problem are relatively few. Most often label noise
is dealt with in an ad-hoc heuristic manner, and it involves some preprocessing
of the training set for data removal or relabelling [6]. For example, [7] introduced
an algorithm called ‘depuration’ to iteratively modify the examples whose class
label disagrees with the class labels of most of their neighbours, and remove
these from the data set. Brodley and Friedl [8] used disagreement in ensemble
methods to detect mislabelled examples in the training set. They were able to
obtain improved performance by data cleansing in noise levels of up to 30%.

By contrast, a model-based approach is more principled and more transpar-
ent, by including a model of the mislabelling process as an integral part of mod-
elling the data. Lawrence and Schölkopf [9] incorporated a probabilistic noise
model in their Kernel Fisher Discriminant for binary classification. Based on the
same model, Li et al. [10] carried out extensive experiments on more complex
datasets, which convincingly demonstrated the value of explicit modelling.

In this paper, we take the model-based approach, which will also get us
more insights into the problem. We develop an extension of the probabilistic
model of [9] for multi-class quadratic normal discriminant analysis that we will
refer to as ‘robust Normal Discriminant Analysis’ (rNDA) to distinguish it from
the classical Normal Discriminant Analysis (NDA). We shall demonstrate the
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clear benefits of rNDA in terms of improved estimates of the class-conditional
distributions, and improved classification performance in comparison to NDA,
and we also show enhanced performance in comparison with depuration.

2 The robust Normal Discriminant Analysis (rNDA)

Consider a training set (xn, ŷn)n=1,...,N , where xn are the input vectors and ŷn

are their given, but noisy class labels.
We start by formulating a mixture model for this data, which will include a

hidden variable y for the true labels, by writing the following log likelihood:

L(θ) =

N
∑

n=1

log

K
∑

k=1

p(xn|yn = k; θk)p(yn = k, ŷn = j) (1)

In the above model we made the assumption that the label noise is random,
i.e. it occurs independently of the observation features of x. Now, we can write
the joint probability of the true and observed labels in two equivalent ways, as
p(yn = k, ŷn = j) = p(ŷn = j|yn = k)p(yn = k) = p(yn = k|ŷn = j)p(ŷn = j), of
which we choose the latter since we intend to place a uniform prior on p(ŷ = j).
Denoting by t

j
n the observed class membership vector of the nth point, i.e. t

j
n = 1

iff ŷn = j and 0 everywhere else, we rewrite (1) in the form of K mixture models
that share the same set of parameters {θk}k=1,...,K :

L(θ) =

K
∑

j=1

N
∑

n=1

t
j
n log

K
∑

k=1

p(xn|yn = k; θk)p(yn = k|ŷn = j)p(ŷn = j). (2)

Now, to get round of working with the logarithm of a sum in (2), we employ the
EM methodology to optimise the expected complete data log-likelihood or the
so-called Q function, which is the following:

Q =

K
∑

j=1

N
∑

n=1

t
j
n

K
∑

k=1

p(yn = k|xn, ŷn = j) log p(xn|yn = k, ŷn = j; θk)

+

K
∑

j=1

N
∑

n=1

t
j
n

K
∑

k=1

p(yn = k|xn, ŷn = j) log[p(yn = k|ŷn = j)p(ŷn = j)](3)

The E-step or Expectation step consists of the calculation of the posterior dis-
tribution of the latent variable yn for all points xn.

p(yn = k|xn, ŷn = j) =
p(xn|yn = k; θk)p(yn = k|ŷn = j)p(ŷn = j)

∑K

k=1
p(xn|yn = k; θk)p(yn = k|ŷn = j)p(ŷn = j)

. (4)

The M-step or Maximisation step is the optimisation of (3) with respect to class
means, class covariances, and mislabelling probabilities. Solving the stationary
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equations, we obtain:

µk =

∑K

j=1

∑N

n=1
(tj

n)p(yn = k|xn, ŷn = j) · xn

∑K

j=1

∑N

n=1
(tj

n)p(yn = k|xn, ŷn = j)
(5)

Σk =

∑K

j=1

∑N

n=1
(tj

n)p(yn = k|xn, ŷn = j)(xn − µk)(xn − µk)T

∑K

j=1

∑N

n=1
(tj

n)p(yn = k|xn, ŷn = j)
. (6)

To get the update equations for the mislabelling probabilities, we define γjk
def
=

p(yn = k|ŷn = j) to be the probability that the label has flipped from class k to

class j. We plug γjk into (3), add a Lagrangian term to ensure that
∑K

k=1
γjk = 1

and solve the stationary equations for γjk. This yields:

γjk =

∑N

n=1
p(yn = k|xn, ŷn = j)

∑N

n=1

∑K

k=1
p(yn = k|xn, ŷn = j)

. (7)

We then iterate the E and M steps to convergence.
To classify an unseen point, we normally have to calculate posterior proba-

bility of each class using eq. (4). However, this is not directly possible since eq.
(4) depends on ŷ which is typically unknown for test points. Indeed, the testing
procedure in [9] assumes that noisy labels are available for test points too. This
is typically unrealistic to expect, and to get round of this limitation we compute
p(y) by marginalising over ŷ, which gives us:

p(yn = k|xn) =
p(xn|yn = k)

∑K

j=1
p(yn = k|ŷn = j)

∑K

k=1
p(xn|yn = k)

∑K

j=1
p(yn = k|ŷn = j)

(8)

3 Experiments

3.1 Datasets

We evaluated our model using three synthetic and two real-world datasets. The
details of each dataset is listed in Table 1. We used class separation [11] defined as
c = mini6=j ‖µi − µj‖ /

√

d max(λmax(Σi), λmax(Σj)), where λmax(Σ) represents
the largest eigenvalue of the covariance Σ and d is the dimensionality of the data,
to quantify the difficulty of the datasets. A 1

2
-separated mixture corresponds to

highly overlapping Gaussians, while a 11

2
-separated (or larger) is considered to

be a well-separated mixture. For real-world data we use Iris and Wine data
from the UCI repository [12].

3.2 Results and Discussion

We asked the following questions: (i) How does label flipping affect the parameter
estimates, and the class prediction performance of the traditional NDA? (ii) Can
rNDA improve performance in terms of either or both of these measures? (iii)
How does our rNDA compare with the existing model-free method of depuration?
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We start by an illustrative example. Figure 1 shows the Synth-1 data with its
true mean and covariance parameters and the induced true decision boundary, in
comparison with their estimated counterparts as obtained by our rNDA and the
traditional NDA respectively. From this result it is quite clear that incorporating
a noise model improves dramatically on the quality of parameter estimates.
Without a model of the label noise process, in turn, the estimated covariances
of NDA grow towards the noisy distribution. This can also affect the decision
boundaries and consequently degrade the classification accuracy.

Next, we present experiments that assess the classification accuracy of the
methods under study. We also included a nearest neighbour (NN) classifier in
our comparison as a baseline since depuration is structurally related to NN.
Figure 2 and Figure 3 summarise the results obtained. At each level of label-
noise we performed 10 experiments, and the figures show the mean performance
along with one standard error.
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(b) Estimated with rNDA
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(c) Estimated with NDA

Fig. 1: Decision boundary induced by the models at 30% noise level on Synth-1

dataset. The black ellipses are the estimated parameters.

We observe that on both Synth-2 and Synth-3, rNDA outperforms its competi-
tors in up to 70% noise conditions. We should note, though, that label flipping
of over 70% is unlikely to occur in practice. Depuration came out in the second
place, while traditional methods did not perform very well.

Figure 3 shows the results on the real datasets, so that the Gaussian shape of
the classes, as assumed by the model, is more unlikely to hold. Yet, rNDA still
ranks in the first place. On the figure, depuration does occasionally outperform
rNDA on the Wine dataset but these differences are marginal.

Dataset C-separation Dimensionality # Classes
Synth-1 1.5 2 3
Synth-2 0.5 10 4
Synth-3 1.5 6 5

Iris 0.30472 4 3
Wine 0.34995 13 3

Table 1: Characteristics of the datasets employed in our study.
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(a) 4 classes problem
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(b) 5 classes problem

Fig. 2: Classification accuracy (%) on Synth-2 and Synth-3 datasets.
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(a) UCI Iris
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(b) UCI Wine

Fig. 3: Classification accuracy (%) on real-world datasets.

We also studied various factors of the data setting that have an impact on
the results. The effect of data dimensionality is shown in Figure 4a. We notice
that rNDA tends to perform better in comparison with competitors when the
data dimensionality is high. However, in that case more data points are required
to obtain the best performance, as seen in Figure 4b. Finally, from experiments
varying the c-separation (omitted) we observed the performance of all methods
increases at roughly the same rate as the classes becomes more clearly separated,
as one might expect indeed.

4 Conclusions and Future Work

We presented a generative multi-class classifier for learning with labelling errors.
We built this as an extension of quadratic normal discriminant analysis, by
including a model of the labelling error process. Future work will relax the
Gaussianity assumption of the class conditional distributions, in order to blend
the flexibility of local approaches with the clarity of probabilistic modelling.
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(a) Effect of Dimensionality
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(b) Effect of # of data points

Fig. 4: The effects of data dimension and number of training points. The exper-
iments were performed at 30% noise.
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