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Abstract. This paper derives robust stability conditions for neural network control
of sampled-data systems whose parameters are uncertain. The controllers are
nonlinear, full state regulators implemented as single hidden layer, feedforward
neural networks. The controlled systems must be locally controllable and full-state
accessible. The robust stability is confirmed by the existence of a Lyapunov
function of the closed loop systems. A modified backpropagation algorithm with a
model reference technique is employed to determine the weights of the controllers.
Simulation results on the classical motor-driven inverted pendulum model are
presented to demonstrate the applications of these conditions.

1 Introduction

Neural networks (NNs) have been proposed for use in a broad range of control
applications [1]-[2]. Nowadays, there are many approaches used to design a neural
network controller (NNC) [3]-[6]. Regardless of the design approach, the stability of
the control system needs to be systematically verified. Moreover, the problem
becomes more complex when any parameter of the system is uncertain. The control
system that remains stable in the presence of the uncertainty is said to be robustly
stable.

A robustifying control methodology using high-order NNs was proposed by
Rovithakis [7]. In his approach, a nominal controller was first designed to guarantee a
desired control performance for the nominal system. The NN was then trained to
approximate the nonlinear terms that were not included in the nominal model. The
parameters of the trained NN were employed to form the augmented adaptive control
signal, which actually robustified the nominal system. Kuntanapreeda and Fullmer
[9], [10] presented stability sufficient conditions for a class of NN control systems.
The controller was a single hidden layer feedforward NN, with linear output functions
at the output neurons. The controlled nonlinear system was restricted to be locally
hermitian, which was later removed in [11]. The stability conditions were for
nonadaptive applications. A modified backpropagation training algorithm for
adjusting the weights of NNCs was also proposed in [9]. This modified algorithm
imposed the stability conditions as training constraints, so the stability of the NN
control systems is guaranteed.

In this paper, we extend the works in [9]-[11] by deriving robust stability
conditions for NN control of sampled-data nonlinear systems, whose parameters are
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uncertain. The modified backpropagation algorithm proposed in [9] is also used here
for training NNCs to satisfy with the new conditions.

2 Neural Network Control Systems

Consider NN control systems comprising a nonlinear system with parameter
uncertainties and a feedforward NN closing the feedback loop as shown in Fig. 1

2.1 Controlled Systems with Parameter Uncertainties

We consider nonlinear uncertain systems of order » with the state-space model
ox(7)=G(x(7)u(z),5)
0=6(0.0,5) (12)
where 0 denotes the differentiation operator for continuous-time systems, or the shift
operator for sampled-data systems, 7 is the time-step & for sampled-data systems,

xeR" is the state vector with initial condition x,, u € R™ is the input vector, and

5 € R? is an uncertain parameter vector. It is assumed that the systems can be
modeled as linear uncertain systems

ox(t)=[Ay +a, 4, Iz )+ Byu(t). (1b)

Here 4, e R and B, e R™" are a nominal constant system and input matrices,

respectively. The system’s uncertainties are represented by 4, e ", and «; e R
where |a1| <ueR". The pair (4,,B,) is assumed to be controllable.

Remark 1: In (1b), 4, and B,, respectively, can be found by computing the

Jacobian matrices of G(O) with respect to x(7) and wu(r) evaluated at the

equilibrium point. Also, 4; and ¢, , as well as  , can directly be estimated from

oy Apx(k) = Glx(k), u(k),8)— [Apx(k) + Byu(k)]. ©)
x(k+1)=G(x(k),u(k),5)
dx
AD GRS >
Uncertain Nonlinear System
ufk) 0, j I: S x(k)
oot
Neural Network Controller

Fig. 1. Neural network control of Sampled-data systems.
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2.2 Neural Network Controllers

We consider nonlinear uncertain systems of order »n with the state-space model.
The controllers are full state regulators implemented as single hidden layer
feedforward NNs with a linear output layer. The hidden layer consists of p nonlinear

pxn

neurons whose activation functions are hyperbolic tangent. Let W, € R and

W, e R"™? be the weight matrices in the hidden layer and the output layer,
respectively. The control law can then be written in the form

u(t)= WzF(W1x(T))= WzF(h)) ®)
where F(h) is a p-vector function whose ith component is f;(h; ) =tanh(h; ) .

3 Robust Stability Conditions

The proofs of robust stability are achieve d by showing the existence of Lyapunov
functions of the closed loop control systems [11], [12].

Proposition : The sampled-data control system, as shown in Fig. 1, consisting of
the uncertain system (1) with the neural network control law (3) is equilibrium stable
in the presence of the uncertain parameter & if there exists a positive symmetric

definite matrix P e R™" and a matrix 7~ € R¥*? | a matrix g € R™*? such that
(1+ )4y +aBw 0, " P4y +aB,W, W, |- P=-0—qq" — u(l+u)A P4, (4a)
[4y +aBw, W, ) PBW, = W] —qI'" — ud] PB,W, (4b)
Wi By PBW,=21-IT" (4c)
where a € R*is less than one, O € R™" is a positive symmetric definite matrix, and
I is the identity matrix of dimension p.
Lemma 1: For any A, A, e R™ and any positive symmetric definite matrix
P eR™ the following matrix inequality holds:
AT P4, + AT PA< AT PA+ AT P4, . (5)
Proof: For all k >k, let the uncertain sampled-data system be given as (1) with
the NNC (3) and assumed P, ¢, and [ satisfy (4). Consider the following Lyapunov
function candidate:
V =x(k)T Px(k).
Using (2) and (3), the time difference of 7 along the state trajectory of the control
system is
dV =V(k+1)-V(k)
= x(k + 1) Px(k +1)— x(k)Px(k)
= [(4y + en A )x(k) + BV, FOW x(k))]" Pl(Ay +a A) )x(Kk) + BV F (W, x(k) )]
— x(k)Px(k).

For convenience, we will drop the time step & of x(k).
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where s =W,;x and I?(h) = F(h)—ah . It is convenient to define A= Ay +aBW,W,.
dv = [(Z + a4, )x+ BOWZﬁ(h)]T P[(Z +oy A, )x+ BOWZF(h)]— x" Px
=x" [ZTPZ - Pl\' +ax” [ZTPAI + AITPZ]X +afx" AT PAx
+2xT AT PBW, F(h) + 2a,x" AT PBW,F(h)+ FT (W) BL PBW,F(h).
By Lemma 1 and |a ,| < u , we obtain
dv <x" [Z Tp4 - P]x +ax” [Z TP4+ A P4, ]x +aix" AT PAx +
2xT AT PBW,F(h) + 2a,x" AT PBW,F(h)+ FT (W] Bl PB,W,F(h)
<37 (A7 P~ Ple+ o [AT P + AT PA v + 1237 AT PAx +
2xT AT PB W, F(h) + 24" AT PBW,F(h)+ FT (W BL PBW,F(h)
= xT[(l +u)ATPA - P]x + u(1+ @)x" AT Pax +
2x" AT PBW, F(h)+ 24" AT PB,W,F(h)+ F" (W) BL PBW,F(h)
Using (4) yields
dV < —x"Ox —x"qq" x + 2x" AT PBW,F(h) + 2 " AT PByW,F(h)
+ FT mwl B PBW,F(h)
=—x"Ox—x"qq" x = 2x"W,F(h)— 2x" qUT F(h)+ 2F" (h)F(h)— FT (WI'T" F(h)

= xTOx - erq 4 ﬁT(h)F”Z — 2| Fety - F ) Fw)

~ 2 &~ ~
=0 |¥Tg+ FT o[ ~23” Tl 7ichy)
i=1

Thus, following the same argument as in Proposition 1 [13], we have dV <0.
Therefore, V' is a Lyapunov function of the control system and the control system is
equilibrium stable.

4 Simulation result

Consider a sampled-data system which is obtained by sampling the motor-driven
inverted pendulum

X
a2 ®
dt | Osinx; —x,+10u
with a sampling rate of 0.05 second. Here, x € R7is the state vector, u € R is the
input, and 0 [1 .8, 2.2] is the uncertain parameter of the system. The approximate

difference equation for the system (6) with a constant input at each time step can be
simply written using Euler’s formula as

] = x,;(k)+0.05x,(k)
Hk+1)= x;(k)+0.05(8sinx;(k)—x,(k)+10u(k))|

By following the same procedure as in Example 1, we obtain the model (1b) of the

(7
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system (7) as

(k+1) 1.00 0.05 . 0.00 0.00 (k)+ 0.01 (k)
X = a X u
0.10 0.95 0.10 0.00 0.50

where |(x ]| <0.1 and the trained weights and related matrices are found to be
—0.50868560 —0.00453348
—-0.54005599  0.04906967
—0.46211462 —0.07214932
0.29284129  0.33525182
W, = [0.48524()()9 0.34312202 0.64917501 —().99552114],
{44.82832736 4.20470253}

;=

>

4.20470253  3.50589685
{0.13633992 -0.55178551 0.64501033 0.419]]450}

1= —0.06838212 0.35885360 —0.40765282 —0.42026085
and

—0.40952492  0.93229043  0.69814220 0.51542845
| 098742458 0.23033026 —0.51450794 0.77640411
| —0.83442536  —0.58978048 —0.55640354 0.61207556 |

—0.48901040 0.97337314 —1.01047819 0.05625793

In Fig. 3, the solid line represents the contour of dV for the existing Lyapunov
function, whereas the dashdot line corresponds to the other Lyapunov function of the
case without uncertainty. The lines separate the positive and negative regions of dV .
From this figure, we observe that the Euclidean balls of radius 5.8 and 3.6, which lie
within the regions where dV < 0, are estimates of the regions of stability for the
corresponding NN control systems. The stability region, when employing the robust
stability condition (4), is noticeably larger than that of the other. The comparison of
the system responses between two NN control systems and the reference model is
shown in Fig. 2

Ref. Model
MM Contral
MM Control (ho unceratinty)

0s T

MM Contral (no unceratinty)
05 [

MM Control

Ref. Model

0 1 2 3 4 5
Time (sec)

Fig. 2 : Control responses, x,(r) and x,(¢). Fig. 3 : Contour plot of g1 .
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5 Conclusion

Robust stability conditions for neural network control of uncertain sampled-data
nonlinear systems have been derived in this paper. A modified backpropagation
algorithm imposed the derived stability conditions as the training constraints are used
to adjust the weights of the NNCs. The robust stability is achieved by showing the
existence of a Lyapunov function of the closed loop systems. By evaluating the
existing Lyapunov functions to obtain the finite region of stability, we found that the
stability regions, when employing our new robust stability conditions, are visibly
larger than when using the other stability conditions that do not include the
uncertainties. The simulation results show satisfactory control responses and are
consistent with the derived conditions.
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