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Abstract. We propose a powerful alternative to customary linear spec-
tral unmixing, with a new neural model, which achieves locally linear but
globally non-linear unmixing. This enables unmixing with respect to a
large number of endmembers, while traditional linear unmixing is limited
to a handful of endmembers.

1 Introduction

Linear mixture modeling (�unmixing") has been popular in the modeling of
spectral imagery, for its low computational expense and easy interpretation [1].
With a few endmembers (distinct spectra representing extremes in mixing trends
of the materials in the scene) the entire image can be characterized through the
fractional contributions of the endmembers at a given pixel location, However,
spectra interesting from the application point of view, or a larger number of
endmembers can cause near-collinear situations and prevent matrix inversion
that yield the fractions. In practice, linear mixture models with more than
5�6 endmembers are rare, for this reason. Hyperspectral images characterize
complex scenes where unmixing with respect to a large number of endmembers
is often desirable, but may not be possible with customary linear models.

2 Linear Unmixing

For a linear unmixing model of hyperspectral data we assume pixels (data vec-
tors) v ∈ Rnb with nb is the number of bands. Let NC be the number of classes,
M the number of endmembers and N the number of pixels (data). An endmem-
ber emi =

(
em1

i , . . . , em
b
i , . . . , em

nb
i

)
is a spectral signature vector of a certain

material. The linear mixing model by [1] is

v =
M∑
i=1

fiemi + r (1)

with fi is the fraction of the endmember emi (mixing coe�cient) with the restric-

tion
∑M
i=1 fi = 1 contributing to the pixel v and r (v) = r =

(
r1, . . . , rb, . . . , rnb

)
is the residual vector for an given pixel v. Depending on the mixing model,
fi ≥ 0 may additionally be required leading to a convex problem. This limiting
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case is not considered here in the used unmixing linear model (Spectral Mixture
Analysis, SMA, [1]).

3 Nonlinear Unmixing by Fuzzy Supervised Self-
Organizing Map

In the following we suggest a model for unmixing that estimates local mixing
coe�cients for local models, which can be non-linearly distributed in the data
space. It is a prototype based semi-supervised vector quantization, whereby the
prototypes are the local data models and the local mixing coe�cients are learned
according to a semi-supervised adaptation scheme. The underlying robust vec-
tor quantization scheme here is the self-organizing map (SOM) [3]. However, a
transformation to similar robust vector quantizers like neural gas is straightfor-
ward.

3.1 The Fuzzy Supervised Self-Organizing Map (FSSOM)

The usual SOM model assumes data points v ∈ V ⊂ Rnb according to the
data density P (v). The prototypes wq are assigned to an externally given
(neuron) lattice A with neurons (nodes) q ∈ A, whereby A is equipped with
an underlying topological structure usually chosen as a regular grid and NA is
the number of nodes. Additionally, to each data point belongs a (fuzzy) class

label vector c (v) ∈ [0, 1]
NC describing the data point's degree of membership

to the NC classes. If
∑NC

i=1 c
i (v) = 1 holds, the labeling is called probabilistic

and possibilistic otherwise. The data labeling is crisp ifc (v) ∈ {0, 1}NC is valid

additionally. Accordingly, c (wq) ∈ [0, 1]
NC denotes the class label vector of

neuron q class assignments. We denote the grid dissimilarity between neurons q
and q′ by dA (q,q′), and d (v,wq) is the di�erentiable dissimilarity in the data
space, frequently chosen as the squared Euclidean distance.

The Heskes-variant of SOM allows an gradient descent scheme of prototype
adaptation according to the cost function

ESOM =

ˆ
P (v) es(v) (v) dv. (2)

The Heskes-mapping (winner determination) rule is given by

s (v) = argminq∈A (eq (v)) (3)

with local costs
eq (v) =

∑
q′∈A

hSOMσ (q,q′) d (v,wq′) (4)

where hSOMσ (q,q′) = exp

(
−dA(q,q′)

2σ2

)
is the neighborhood function [2]. The

respective stochastic gradient learning rule is

4wq = −hSOMσ (q, s (v))
∂d (v,wq)

∂wq
. (5)
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The label information is not considered in SOM (unsupervised mode). The
receptive �eld of the prototype wq is de�ned as Ωq = {v ∈ V |q = s (v)} with
n (q) = |Ωq| is number of data vectors belonging to the receptive �eld Ωqin case
of �nite data sets.

The Fuzzy-Supervised SOM (FSSOM) is a semi-supervised learning variant
of SOM taking into account the label information c (v) of data to adapt the
prototype labels [4]. Further, in contrast to simple post-labeling, the prototype
adaptation is also in�uenced by the class information. Particularly, the FSSOM
model considers a multiplicative combination of the label dissimilarity and the
data dissimilarity in a single deviation measure Dε (v,wr, γ) replacing the usual
data dissimilarity in (4) during model training. This combined dissimilarity is
determined according to

Dε (v,wq, γ) = Dδ
ε (c (v) , c (wq) , γ) ·Dd

ε (v,wq, γ)− εδεd (6)

with the label dissimilarity measure Dδ
ε (c (v) , c (wq) , γ) =

(γ · δ (c (v) , c (wq)) + εδ) with di�erentiable dissimilarity δ (c (v) , c (wq))
usually chosen as the Euclidean distance. The data space dissimilarity
Dd
ε (v,wr, γ) = ((1− γ) · d (v,wr) + εd) is based on d (v,wr), whereby the

parameter vector ε = (εδ, εd) determines a small o�set term, which is necessary
to prevent unexpected behavior of the FSSOM under certain conditions [4].
It turns out that Dε (v,wq, γ) is a quasi metric [7]. The parameter γ ∈ [0, 1]
determines the in�uence of the class information with γ = 0 yielding the
standard Heskes-SOM.

The FSSOM model leads to a prototype adaptation based again on the gra-
dient of the cost function ESOM (2), but which is now also in�uenced by the
class agreement δ (c (v) , c (wq)):

4wq = − (1− γ) ·Dδ
ε (c (v) , c (wq) , γ) · hSOMσ (q, s (v)) · ∂d (v,wq)

∂wq
(7)

and is accompanied by the label adaptation

4c (wq) = −γ ·Dd
ε (v,wq, γ) · hSOMσ (q, s (v)) · ∂δ (c (v) , c (wq))

∂ (c (wq))
(8)

according to gradient ∂ESOM

∂c(wq)
of the Heskes-SOM.1 Thus, both, prototype vectors

and their class assignment vectors, are parallely adjusted with subsequent renor-

malization of the class vectors to ensure c (wq) ∈ [0, 1]
NC . As the result, the

FSSOM represents the data as well as their class distribution by the prototypes
wq and their fuzzy label c (wq) determining the the gradual class assignments.

3.2 The Unmixing Model

We now give the description, how the FSSOM can be used as a non-linear unmix-
ing model. The hyperspectral pixels are the data vectors. Further, endmembers

1At this point it is essential to use the Heskes-SOM, because it has a cost function whereas
the usual SOM has not.
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are treated as class representatives with crisp labels c (v) in the FSSOM. In the
following we make the trivial assumption that at least one sample per endmember
is contained in the data to be analyzed, i.e. ni ≥ 1 holds for the overall number
of pixels (samples) associated with the ith endmember emi. In this localized
model we assume local endmembersemi (q) associated with the ith endmember
of the linear mixing model for the local area of the receptive �eld Ωq. Let ni (q)
be the number of pixels (samples) associated with the ith endmember emi in
the receptive �eld Ωq. Averaging these pixels emi,j (q) = v gives an estimate

of the local endmembers, i.e. emi (q) ≈ 1
ni(q)

∑ni(q)
j=1 emi,j (q). The local linear

mixing model for a prototype wq is obtained as

wq =
M∑
i=1

ϕi (q) · emi (q) (9)

with local mixing coe�cients (fractions) ϕi (q), which are estimated by the al-
ready learned label vectors of the FSSOM, i.e. ϕi (q) ≈ ci (wq)re�ecting the re-

lation ϕi (q) = ni(q)
n(q) . Finally, for a given pixel v the unmixing is obtained by the

local estimates ϕi (s (v)) instead of the global unmixing coe�cients fi in the lin-
ear model. Hence, all pixels belonging to the same receptive �eld Ωq are treated
according to the same local mixing model. Although the local unmixing is still
linear, the overall new unmixing model is non-linear according to the usually
non-linear mapping realized by the FSSOM mapping (3). A further improve-
ment is achieved, if also the second winning unit s2 (v) = argminq∈A\s(v) (eq (v))
is used. Interpolating between s and s2 we obtain the new estimate

ϕi (s (v)) ≈
(

es2 (v)

es (v) + es2 (v)

)
ci
(
ws(v)

)
+

(
es (v)

es (v) + es2 (v)

)
ci (ws2) . (10)

4 Application to Hyperspectral Data

We unmix, with FSSOM, a hyperspectral image of the Lunar Crater Volcanic
Field (LCVF), Nevada. The data and classi�cation into NC = 23 materials
classes (spectral types) are described in [5, 6]. We compare the results to a regu-
lar (globally) linear mixture model, SMA (Spectral Mixture Analysis). Training
spectra (endmembers) for both SMA and FSSOM (NA = 10× 5) are the same,
and multiple spectra represent each endmembers. Fig1 shows a comparison of
3-endmember mixtures (M = 3) from the two methods. We show 2 out of three
endmember fraction images for reasons of space limitation. While the SMA ex-
hibits more nuances, the high and low fractions are clearly at matching locations.
In this experiment we used the top two winners for interpolation as in eq (10).
Including more of the top winners in the interpolation will increase the nuances
in the FSSOM output as well. The more substantive di�erences are due to the
fact that the FSSOM keeps the fractions between 0 and 1, by virtue of bet-
ter, globally non-linear, model �t whereas the globally linear, rigid SMA model
is bound to have large negative or overpositive fractions. (These are clipped
to 0 and 1, respectively, in the images shown, in order to get a direct visual
comparison with the FSSOM fractions, and show larger areas of extreme values
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Figure 1: Fraction images of the Lunar Crater Volcanic Field site. Left column:
fractions from linear unmixing; Right column: fractions produced by FSSOM.
The top row shows the �cinder", bottom row shows the �playa" fractions.

than the SMA. Since the SMA puts no constraint on the fraction values (only
that they add to 1), a few extreme fraction values (caused by poor model �t at
those pixels) can cause an image scaling that makes visual comparison di�cult.
It is not trivial, however, how to clip and scale image values for straightfor-
ward, automatic comparison. This is subject of near-future investigation. The
third fraction image (vegetation, not shown here)), is equally matching its SMA
counterpart.

Encouraged by this result, we computed a 23-endmember mixture with FS-
SOM (NA = 15 × 5), where the M = 23 endmembers are de�ned by training
pixels used in an earlier classi�cation of the LCVF image [5]. There is no SMA
equivalent since the SMA cannot handle such large number of endmembers,
many of which are very similar to one another. However, we can compare the
fraction images to the classi�cation, arguing that the pixels with the highest
fractions should delineate the locations of the material class that is character-
ized by the respective endmember spectra. Figure 2 indicates that this is indeed
the case.

Future work needs to investigate the di�erences between SMA and FSSOM
results, to understand where the FSSOM produces better or poorer model �t,
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Figure 2: Unmixing of the LCVF image with 23 endmembers. Left: classi�-
cation map from [6]. Right: fractions produced by FSSOM, for the �Cinder"
endmember. In this case, only the top winner was used to compute the FS-
SOM fractions. The high-fraction locations match the Cinder class (A, red)
very well. The rest of the 23 fraction images are similarly good matches to the
corresponding classes.

and why. Overall, FSSOM provides an interesting non-linear alternative for
unmixing based on local linear unmixing. In particular, problems with many
endmembers can be handled by FSSOM, which is a signi�cant improvment com-
pared to customary linear spectral unmixing.

References

[1] J. B. Adams, M. O. Smith, and A. R. Gillespie. Imaging spectroscopy: Interpretation based
on spectral mixture analysis. In C. Peters and P. Englert, editors, Remote Geochemical
Analysis: Elemental and Mineralogical Composition, pages 145�166. Cambridge University
Press, New York, 1993.

[2] T. Heskes. Energy functions for self-organizing maps. In E. Oja and S. Kaski, editors,
Kohonen Maps, pages 303�316. Elsevier, Amsterdam, 1999.

[3] T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences.
Springer, Berlin, Heidelberg, 1995. (Second Extended Edition 1997).

[4] M. Kästner and T. Villmann. Fuzzy supervised neural gas for semi-supervised vector
quantization - theoretical aspects. Machine Learning Reports, 5(MLR-02-2011):1�12, 2011.
ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/˜fschleif/mlr/mlr_02_2011.pdf.

[5] E. Merényi. Precision mining of high-dimensional patterns with self-organizing maps: Inter-
pretation of hyperspectral images. In Quo Vadis Computational Intelligence: New Trends
and Approaches in Computational Intelligence (Studies in Fuzziness and Soft Computing,
Vol 54, P. Sincak and J. Vascak Eds.). Physica Verlag, 2000.

[6] E. Merényi, W. Farrand, J. Taranik, and T. Minor. Classi�cation of hyperspectral im-
agery with neural networks: Comparison to conventional tools. In T. Villmann and F.-M.
Schleif, editors, Machine Learning Reports, volume 5, pages 1�15, 2011. ISSN:1865-3960.
on-line http://www.techfak.uni-bielefeld.de/̃fschleif/mlr/mlr_04_2011.pdf. Also submit-
ted to EURASIP Journal on Advances in Signal Processing.

[7] E. Pekalska and R. Duin. The Dissimilarity Representation for Pattern Recognition: Foun-
dations and Applications. World Scienti�c, 2006.

190

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.




