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Abstract. We tackle the problem of reward-based online learning of
multiclass classifiers and consider a policy gradient ascent to solve this
problem in the linear case. We apply it to the online adaptation of an
EEG-based “P300”-speller. When applied from scratch, a robust classifier
is obtained in few steps.

1 Introduction

We consider the properties of classifiers embedded in devices capable of interact-
ing with their environment and adapt their parameters in order to increase their
accuracy during use. This problem of adapting the parameters while the device
is used is known as the “online learning” problem. Online learning is particularly
relevant when the statistics of the input change over time, i.e. when the input is
non-stationary [1]. For such online adaptation to take place, the validity of the
classification must be estimated during use, occasionally or at each new response.
In the supervised case for instance, the expected label is given to the classifier
after its response. In the non-supervised case, no feedback at all is given. Here
we consider the reinforcement learning case, where the feedback may take the
form of a scalar, named the “reward”, and test it on an EEG signals dataset from
a non-invasive brain-computer interface (BCI).

The objective of BCI’s is to analyze in real-time EEG signals recorded at the
surface of the scalp to control a device (mouse, keyboard, wheelchair,...). We
consider here the case of grid-based P300 spellers [2], where the subject faces a
screen with a 6 x 6 grid of letters and numbers and is asked to focus his attention
on the symbol he wants to spell out. Then, rows and colums are flashed several
times at random while samples of EEG signals are extracted. After each row
and each column has been flashed p times, K ERPs (event related potentials)
are calculated for each row and each column of the grid. This set of multiple
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ERP observations is constructed the following way: for each flash time ¢, take
a 600 ms subsample s;.t1600ms and classify it in its category € 1,..., K (row or
column number). Then, for each category k € 1..K, calculate class average x.
Finally, construct a multi-ERP set x = (x1,...,xx). Then, the classifier has
to identify in the set the index of the row and column where a particular ERP
(called the “P300”) took place, so that the resulting letter is at the intersection
of this row and this column. Then another series of flashes starts over until the
expected sequence of letters is formed.

The EEG dataset we use comes from a P300 experiment reported in [3]. This
dataset contains data from 20 different subjects, each subject having spelled out
220 letters where every row and every column was flashed p = 5 times per letter.
The correct response is known for every trial and every subject. From this
dataset, we verified that robust and well-documented methods, like Naive Bayes
[3], linear discriminant analysis (LDA) [4], or support vector machines (SVM)
[5], can achieve a spelling accuracy of 85%, which is consistent with state-of-the
art results for this number of repetitions.

After a classifier has been trained, the subject is expected to handle the
interface and be capable to achieve a letter-by-letter spelling task autonomously.
This separation between training and use may however be a problem in real
conditions, because of the putative non-stationarity of the signal collected by the
electrodes. As many non-predictable events are expected to take place during
an effective spelling session, the quality of the signal (and thus the accuracy of
the interface) is expected to degrade over time. To tackle the non-stationarity
problem, different methods have still been proposed, most of them relying on an
unsupervised expectation-maximization (EM) procedure [6], which is not proven
to always converge to a consistent classifier.

Here we make, to our best knowledge, a first attempt to adapt the methodol-
ogy of reinforcement (i.e. reward-based) learning [7] to the context of an adaptive
BCI P300 speller. In order to tackle the non-stationarity problem, we consider
that a “reward”, that is a scalar representing the agreement of the subject regard-
ing the response of the device, is available. A reward is of course less informative
than the true response, but, in counterpart, is in general cheaper to obtain. In
a P300-speller setup, two solutions should be considered for that purpose: (i)
use the “error negativity” ERP following a wrong classifier’s response, where a
detection rate of 85-90% is reported in the literature [8]. In that case, a spe-
cific classifier is needed for detecting the error negativities in the EEG, and as
such a specific training session should take place before starting the P300 ses-
sion; (ii) dedicate a specific symbol to the case when the previous character was
incorrectly spelled (i.e. a “backspace” key) to detect the subject disagreement
regarding previous response. A minimal spelling accuracy is then needed for this
approach to be effective, which means that a training session has to take place
prior to the spelling session.

In this paper, we set apart the reward detection problem and look in section
2 at the principles underlying reward-based learning. Then, in order to bring a
proof of concept, we present in section 3 a simulation where learning is made
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“from scratch” (i.e. without initial training or calibration).

2 Multiclass policy gradient with immediate reward

2.1 Stochastic classifier

In the particular setting we consider (P300 speller), the problem is to identify a
particular event (the “oddball”) in a set of K observations x = (z1, ...,xx) € XK,
i.e. identify the “target” within a set having multiple inputs belonging to the
“non-target” category and only one input belonging to the “target” category.
The adaptive model we use is based on a regularity assumption, i.e. oddball and
non-oddball examples display regularities that allow to separate them on the
basis of their intrinsic features. The classifier relies on a vector of parameters f
that is to be compared with every observation of the set x through the scalar
products (f,xy)’s that are expected to enhance the target and diminish the non-
target inputs. The actual response y € {1,..., K} is drawn from a multinomial
distribution relying on the m-scores (softmax choice):

Vk e {1,...K},7(x k; f) = _oxp(f, @) M

B Zl eXp<.f7 $l>

so that that m(x, k; f) is the probability that y = k given x.

2.2 Learning problem

After every response, a scalar r(x,y) (the “reward”) is read from the environ-
ment. In essence, the reward quantifies the achievement of the current trial.
The reward expectation E(r) represents the global achievement!. Maximizing
the reward expectation means to find the best parameters vector f, and thus
the best policy in order to obtain the higher possible reward expectation, i.e.:
maxy E(r). Instead of directly maximizing this quantity, we additionally con-
sider a regularization term that is expected to promote a small norm for the
model and priorize the most recently seen examples in an online setup. The
problem becomes:

m?xg = m)zcle(T) - %”f”2 (2)

where G is the objective function (or “gain” function) and A is the regularization
parameter.
2.3 Policy gradient

When the model is unknown, the solution of (2) can be obtained by trying
to cancel the gradient of G through a stochastic gradient ascent. The policy

1t is given by the integral of the rewards obtained for every observation « and every choice
k, given their probability of appearance: E(r) = IX (Zszl r(x, k)m(x, k; f))p(;)d; where
the distribution p(x) is unknown.
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gradient is a general purpose reward-based algorithm we adapt here to the online
multinomial classification case. Following [9], the regularized policy gradient can
be expressed the following way:

VG =E[rVsln(r)—Af) (3)

Starting from scratch, the update procedure is expected to refine the model
trial after trial using the estimator (3), so that the rewards should be max-
imized in the long run. The general policy gradient estimator is: g(x,y) =
r(x,y)Vyslnn(x,y; f) depending on the two measures x and y. From the deriva-
tion of In7 according to the mapping f, we obtain the following expression:

Q(&y) = T(K,y) (my - Zﬂ(§7 ka f)mk> (4)

k

The regularized online policy gradient ascent update can be defined the following
way: at every time ¢, after reading x;, y; and r;, update the mapping according
to:

K
fe=0=nNFfiq +nme <"L'yt,t - Z T (X, K .ft—l)) (5)

k=1

where 7 is the learning rate.

3 Application to the P300 speller classification problem

In order to estimate the improvement of our classifier, we need to run a series
of experiments, record the responses of the classifier and compare them to the
expected ones. For a given value of the hyperparameters n and A\, we use in the
following a simple cross-validation procedure that reproduces the conditions of
an online learning experiment: for every subject, we run 1000 different simu-
lations. As the order of the examples matters in the online classifier build-up,
each simulation corresponds to a different random shuffle of the initial 220 tri-
als. We then apply the online update (5), with rewards generated by a simple
comparison between the expected letter and the classifier’s response. For a par-
ticular subject, the rate of correct spelling is then calculated (at each trial) as
the average over the 1000 experiments.

We use binary rewards, i.e. 7(x,y) € {r*,r~}, where r* denotes a correct
classification while r~ denotes a wrong classification (with, by principle, r+ >
r~). In the multi-input setup, the values r™ = K —1 and r~ = —1 can be shown
to be optimal in the first steps of the gradient ascent when a linear model is used
(demonstration not given). We compare in our experiments two variants of the
policy gradient algorithm. In a first series, the response y is made according to
a stochastic “softmax” classifier, and in a second series, it is made according to
a deterministic “argmax” classifier. In order to fairly compare the two methods,
we systematically calculate the final spelling accuracy for different values of 7
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Fig. 1: — A — Spelling improvement during P300-speller experiment (mean over
20 subjects). Thin gray lines: individual improvement. Thick line: average
improvement. Left: Softmax policy gradient. Right: Argmax policy gradient.

and \ ranging from 1075 to 10 (“grid” search — not shown -), and find markedly
different optimal values for the two cases, i.e. n =1 and A = 1072 in the softmax
case and n = 10~! and A = 107! in the argmax case. In particular, the product
nA gives an indication on the number of examples that significantly take part in
the classifier build-up (as old examples are progressively erased by more recently
seen examples). This “memory span”, that drives the complexity of the classifier,
can be approximated to n%\’ so that a smaller X\ implies a higher “memory span”
(irrespectively of ). In the softmax case, the number of examples that allow to
reach the final spelling accuracy is found to be O(10%), while it is only O(10?)
in the argmax case.

We compare in figure 1 the different learning curves obtained in our series of
20 x 1000 simulations. The average learning curves show a monotonical increase,
from % (random response) to an average accuracy of ~ 60% after 220 trials,
and a tendency toward continuing improvement for ¢ > 220. This 60% attained
in only 220 trial can be considered fast, since no information except the reward
is available to guide the learning process. The initial improvement indicates
that the algorithm manages to follow the gradient from the very first steps,
despite mostly negative rewards and occasional misleading rewards (when only
the row — or only the column — is correct). Those results generally indicate
that the variance of the gradient estimator is low enough to allow fast and
efficient learning. If a significant improvement is observed for every subject, the
inter-subject variability appears quite high, with final spelling accuracy peaking
to almost 90 % for the best subjects, but hardly crossing 20% for few weaker
ones. This discrepancy between subjects is a known and chronic problem in
BCPI’s. Finally, as the number of letters was limited to 220 in the training
set, the asymptotic spelling rate can not be reached here. If the final spelling
rate appears slightly better in the argmax case, the final slope is steeper in the
softmax case, which suggests a clear tendency toward a continuing improvement,
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where an asymptotic 80% rate seems reachable at a 103 horizon.

4 Conclusion

We have presented the application of a policy gradient algorithm to the problem
of online multi-class classification, where the multinomial choice means identify-
ing the “oddball” in a set of K inputs. The consistency of our update formula has
been tested on a BCI P300-speller dataset, where a systematic improvement of
the spelling accuracy is observed for every subject when starting “from scratch”.
Despite fast learning capabilities, the spelling accuracy attained after 220 trials
does not yet reach the state-of-the-art 85% spelling accuracy expected on this
dataset. Those results are however encouraging for they open perspectives for
BCI autonomous online improvement, and as such should be used in complement
with standard batch classifiers.
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