
A Distributed Wrapper Approach for Feature Selection

Verónica Bolón-Canedo, Noelia Sánchez-Maroño and Amparo Alonso-Betanzos ∗

Department of Computer Science - University of A Coruña

Campus de Elviña s/n 15071 - A Coruña, Spain

Abstract. In recent years, distributed learning has been the focus of much atten-

tion due to the proliferation of big databases, usually distributed. In this context,

machine learning can take advantage of feature selection methods to deal with these

datasets of high dimensionality. However, the great majority of current feature se-

lection algorithms are designed for centralized learning. To confront the problem

of distributed feature selection, in this paper we propose a distributed wrapper ap-

proach. In this manner, the learning accuracy can be improved, as well as obtaining

a reduction in the memory requirements and execution time. Four representative

datasets were selected to test the approach, paving the way to its application over

extremely-high data which prevented previously the use of wrapper approaches.

1 Introduction

Feature selection is a dimensionality reduction technique which consists of detecting

the relevant features and discarding the irrelevant and the redundant ones. A correct

selection of the features can lead to an improvement of the inductive learner, either

in terms of learning speed, generalization capacity or simplicity of the induced model

[1]. Feature selection, since it is an important activity in data preprocessing, has been

an active research area in the last decade, finding success in many different real world

applications [2, 3, 4, 5].

There are three main models which can be distinguished regarding the relationship

between the feature selection algorithm and the inductive learning method user to infer

a model. The filter model relies on the general characteristics of training data and carry

out the feature selection process as a pre-processing step with independence of the in-

duction algorithm. On the other hand, embedded methods perform feature selection in

the process of training and are usually specific to given learning machines. Finally, the

wrapper model involves a learning algorithm as a black box and consists of using its

prediction performance to assess the relative usefulness of subsets of variables. In other

words, the feature selection algorithm uses the learning algorithm as a subroutine with

the computational cost that comes from calling the learning algorithm to evaluate each

subset of features. However, this interaction with the classifier tends to give better per-

formance results than filters and embedded methods [6]. This is probably due to the fact

that the relevant feature subset could not reflect the classifier’s specific characteristics.

For this reason, the wrapper approach will be the focus of this research. Nevertheless,

∗This research has been economically supported in part by the Secretarı́a de Estado de Investigación of

the Spanish Government through the research projects TIN2009-10748 and TIN 2012-37954; and by the

Consellerı́a de Industria of the Xunta de Galicia through the research projects CN2011/007 and CN2012/211;

all of them partially funded by FEDER funds of the European Union. V. Bolón-Canedo acknowledges the

support of Xunta de Galicia under Plan I2C Grant Program.

173

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

it is a very computationally expensive model and in this work we will try to reduce the

time and effort required by the machine learning methods.

Thus, we will investigate how wrapper approaches can take advantage of distributed

learning to reduce the computational cost and speed up the feature selection process in

high dimensional datasets. Distributed learning methods learn from multiple subsets of

data processed concurrently. In order to increase efficiency, learning can be parallelized

by distributing the subsets of data to multiple processors, learning in parallel and then

combining the obtained results. This research will introduce a distributed wrapper ap-

proach which consists of several rounds of feature selection processes whose outputs

are combined into a single subset of relevant features. In this manner, the computational

cost and therefore the time required by the wrapper approach will be significantly re-

duced, allowing its use over some datasets where it was previously unfeasible.

2 Distributed feature selection

As mentioned in the Introduction, the wrapper model will be the focus of our attention.

The idea of the wrapper approach is to select a feature subset using a learning algorithm

as part of the evaluation function. Instead of using subset sufficiency, entropy or another

explicitly defined evaluation function, a kind of “black box” is used to guide the search.

The evaluation function for each candidate subset returns an estimate of the quality of

the model that is induced by the learning algorithm. The search strategy usually comes

in two flavors [7]: forward selection and backward elimination. The former starts with

an empty set of features and adds features one by one, whereas the latter begins with a

full set and removes features one by one; both techniques add or remove according to

improvements in the performance results obtained by the evaluation function. Forward

selection is far less time-consuming than backward elimination [8] so it will be used in

the experiments of this research.

Our proposal is a distributed wrapper method which performs several fast feature

selectors over several partitions of the data, combined afterwards into a single subset

of features. More specifically, we divide each dataset D into several small disjoint

datasets Di. The wrapper algorithm is applied to each one of these subsets, and a

selection Si is generated for each subset of data. After all the small datasets Di were

used, (which could be done in parallel, as all of them are independent from each other),

the combination method constructs the final selection S as the result of the feature

selection process. To sum up, there are three main stages: (i) partition of the datasets;

(ii) application of feature selection to the subsets; and (iii) combination of the results.

The partition of the dataset consists of dividing the original training dataset into

several disjoint subsets of approximately the same size that cover the full dataset. In this

research, the partition will be done vertically, i.e. by features. Instead of performing a

randomly partition, a first step was added in order to rank the features. For this sake, the

well-known Information Gain [9] filter was chosen, which has proven to perform better

than the randomly partition. This univariate filter provides an ordered ranking of all

the features where the worth of an attribute is evaluated by measuring the information

gain with respect to the class. After obtaining this ranking, the data is split by assigning

groups of k features to each subset, sequentially over the ranking. The number of

174

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

features k in each subset is assigned ad-hoc for the datasets employed in this work,

trying to achieve a good balance between number of samples and number of features.

Algorithm 1 Pseudo-code for distributed wrapper

D(m×s) := training dataset with m samples and s features

ns := number of subsets of k features

1. Apply InfoGain over D and obtain a ranking R of the features

2. for i = 1 to ns do

(a) Ri = first k features in R

(b) R = R \Ri

(c) Di = D(m×Ri)

3. for i = 1 to ns do

(a) Si = subset of features obtained after applying wrapper over Di

4. S = S1

5. baseline = accuracy classifying subset D(m×Si) with classifier C

6. for i = 2 to ns do

(a) Saux = S ∪ Si

(b) accuracy = classifying subset D(m×Saux) with classifier C

(c) if accuracy > baseline

i. S = Saux

ii. baseline = accuracy

7. Build classifier C with D(m×S)

8. Obtain prediction P

Once we have several small disjoint datasets Di, the wrapper will be applied to

each one of them, returning a selection Si for each subset of data. Finally, to combine

the results, the first selection S1 is taken to calculate the classification accuracy, which

will be the baseline, and the features in S1 will become part of the final selection. For

the remaining selections Sj , they will be incorporated to the final selection S if they

improve the baseline accuracy, as can be seen in more detail in Algorithm 1. At the end,

this final selection S is applied to the training and test sets in order to obtain the ultimate

classification accuracies. With this final step we try to improve the performance by

removing irrelevant and redundant features.

3 Experimental setup

In order to test our distributed wrapper proposal, we have selected 4 binary prob-

lems which can be consulted in Table 1, depicting their properties (number of features,

training samples, test samples and distributions between the positive and the negative

175

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

classes). These datasets can be considered representative of problems from medium to

large size and can be free downloaded from the UCI Machine Learning Repository [10].

Some of the datasets come originally with training and test samples that were drawn

from different conditions. For the sake of comparison, datasets with only training set

were randomly divided using the common rule 2/3 for training and 1/3 for testing.

Four well-known supervised classifiers, of different conceptual origin, where cho-

sen for forming part of the evaluation function of the wrappers, as well as for perform-

ing the class prediction once the feature selection was accomplished. All the classifiers

(C4.5, naive Bayes, IB1 and SVM) were executed using the Weka tool [11]. Experi-

mentation was performed on an Intel(R) Xeon(R) CPU W3550 @ 3.07 GHz with RAM

12 GB.

Table 1: Dataset description

Dataset Attributes Samples Train Test

Train Test distribution distribution

Madelon 500 1600 800 49% - 51% 52% - 48%

Spambase 57 3068 1533 40% - 60% 39% - 61%

Mushroom 112 5416 2708 47% - 53% 50% - 50 %

Adult 122 16100 16461 24% - 76% 24% - 76%

4 Results and discussion

Our goal is to test the previously described distributed wrapper. By using a distributed

approach, we will be able to execute the wrapper model in scenarios where it was

unfeasible or took a very long time before. To show the adequacy of the proposed

wrapper (Distributed), it will be compared with the performance of the wrapper in a

centralized manner (Centralized), i.e. when applying the wrapper over all the whole set

of features directly. When testing a distributed approach, machine learning researchers

are not only interested in classification accuracy but also in execution time. Table 2

shows the train and test accuracy, the number of features and the execution time required

by each method on each dataset.

A slight decrease in accuracy is acceptable when the processing time is significantly

reduced, as happens with Madelon dataset. Applying the classifier IB1 over this dataset,

the maximum accuracy was obtained (91.50%) with the centralized approach. However,

the time required by the centralized wrapper was 13 hours against 14 minutes required

by each packet in the distributed approach, while the accuracy only decreased in 1%.

For some cases, such as Madelon and Spambase with NB and SVM, or Mushroom with

IB1 and SVM, the accuracy when using the distributed wrapper is improved at the same

time that an important reduction in the execution time is achieved. It is worth to note

that for Mushroom dataset, our proposed wrapper achieves a 100% of accuracy.

On Adult dataset with IB1 classifier our method is able to work in cases where the

centralized approach was unfeasible to run. Plus, for SVM classifier, the time is reduced

from the order of days to the order of hours when employing our proposed method, with

176

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

a slight decrease in classification accuracy (under 1%) and using a smaller number of

features.

Table 2: Classification results for both implementations of wrapper for each dataset.

N/A stands for Not Applicable.

Dataset Method Accuracy No. feat Time

Train Test hh:mm:ss

Madelon

Centralized + C4.5 98.75 86.50 35 06:30:51

Distributed + C4.5 94.56 82.63 28 00:01:08

Centralized + NB 71.94 67.38 21 06:45:08

Distributed + NB 71.50 69.00 20 00:00:29

Centralized + IB1 100.00 91.50 14 13:51:40

Distributed + IB1 100.00 90.13 17 00:04:13

Centralized + SVM 68.06 66.38 16 15:06:40

Distributed + SVM 67.00 66.75 7 00:04:13

Spambase

Centralized + C4.5 95.66 92.04 17 00:13:02

Distributed + C4.5 97.65 91.65 35 00:01:34

Centralized + NB 87.26 87.87 11 00:14:13

Distributed + NB 88.07 88.71 15 00:00:08

Centralized + IB1 98.60 90.99 16 02:36:30

Distributed + IB1 99.90 90.54 14 00:34:50

Centralized + SVM 90.45 90.08 25 02:50:14

Distributed + SVM 90.78 90.80 50 00:01:59

Mushroom

Centralized + C4.5 99.93 99.85 6 00:03:18

Distributed + C4.5 100.00 100.00 30 00:03:36

Centralized + NB 98.54 98.49 3 00:04:19

Distributed + NB 97.88 97.45 6 00:00:35

Centralized + IB1 100.00 99.89 10 06:45:00

Distributed + IB1 100.00 100.00 33 02:14:20

Centralized + SVM 99.80 99.67 7 06:53:20

Distributed + SVM 100.00 100.00 31 00:43:10

Adult

Centralized + C4.5 85.34 83.86 31 06:48:20

Distributed + C4.5 84.14 80.18 16 00:08:53

Centralized + NB 82.97 83.21 26 06:56:40

Distributed + NB 83.30 79.07 19 00:02:32

Centralized + IB1 N/A N/A N/A N/A

Distributed + IB1 78.78 79.58 14 18:20:00

Centralized + SVM 82.83 83.25 14 43:53:21

Distributed + SVM 82.80 82.69 7 01:16:40

It is also worth mentioning that further experiments (not included for the sake of

brevity) revealed that our proposed distributed wrapper improved in average for all

classifiers and datasets the classification accuracy in 3% when compared with the well-

known Correlation-based Feature Selection filter [12]. As expected, the wrapper ap-

proach achieves better results than the filter approach.

177

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

5 Conclusions

In this work, the adequacy of a distributed approach for wrapper feature selection was

tested over four datasets considered representative of problems from medium to large

size. Our goal was to design a distributed wrapper which would led to a reduction in

the running time as well as in the storage requirements while the accuracy would not

drop to inadmissible values.

The experiments showed that our method is able to shorten the execution time im-

pressively compared to the standard wrapper algorithms. Furthermore, our distributed

wrapper achieved a similar performance to the original wrapper. In terms of test ac-

curacy, our method is able to match and in some cases even to improve the standard

results applied to the non-partitioned datasets.

As future work, we plan to apply our proposed method over datasets that prevent

the use of standard wrappers, such as microarray datasets.

References

[1] I. Guyon, S. Gunn, M. Nikravesh, and L.A. Zadeh. Feature extraction: foundations and applications,

volume 207. Springer, 2006.

[2] L. Yu and H. Liu. Redundancy based feature selection for microarray data. In Proceedings of the tenth

ACM SIGKDD international conference on Knowledge discovery and data mining, pages 737–742.

ACM, 2004.

[3] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos. Feature selection and classification

in multiple class datasets: An application to kdd cup 99 dataset. Expert Systems with Applications,

38(5):5947–5957, 2011.

[4] G. Forman. An extensive empirical study of feature selection metrics for text classification. The Journal

of Machine Learning Research, 3:1289–1305, 2003.

[5] P. Saari, T. Eerola, and O. Lartillot. Generalizability and simplicity as criteria in feature selection: ap-

plication to mood classification in music. Audio, Speech, and Language Processing, IEEE Transactions

on, 19(6):1802–1812, 2011.

[6] Mark Andrew Hall and Geoffrey Holmes. Benchmarking attribute selection techniques for discrete

class data mining. Knowledge and Data Engineering, IEEE Transactions on, 15(6):1437–1447, 2003.

[7] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. The Journal of Machine

Learning Research, 3:1157–1182, 2003.

[8] Sanmay Das. Filters, wrappers and a boosting-based hybrid for feature selection. In Proceedings of the

Eighteenth International Conference on Machine Learning, pages 74–81. Morgan Kaufmann Publishers

Inc., 2001.

[9] M.A. Hall and L.A. Smith. Practical feature subset selection for machine learning. Computer Science,

98:181–191, 1998.

[10] A. Frank and A. Asuncion. UCI Machine Learning Repository. http://archive.ics.uci.

edu/ml, 2010. [Online; accessed 14-November-2012].

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The weka data mining

software: an update. ACM SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

[12] M.A. Hall. Correlation-based feature selection for machine learning. PhD thesis, The University of

Waikato, 1999.

178

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

