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Abstract. Machine learning algorithms have evolved by exchanging sim-
plicity and interpretability for accuracy, which prevents their adoption in
critical tasks such as healthcare. Progress can be made by improving in-
terpretability of complex models while preserving performance. This work
introduces an extension of interpretable mimic learning which teaches in-
terpretable models to mimic predictions of complex deep neural networks,
not only on binary problems but also in ordinal settings. The results show
that the mimic models have comparative performance to Deep Neural Net-
work models, with the advantage of being interpretable.

1 Introduction

The effectiveness of human resources can be enhanced by machines, not only
by lowering costs, but also by reducing errors related to tiredness and other
human factors. In spite of machines being powerful at classification tasks such
as image recognition [1] and time series classification [2], the produced models
can at times be complex and hard to interpret. The black-box nature of these
techniques prevents their use in several contexts such as banking and healthcare,
where practitioners often prefer to be able to understand the model behavior and
predictions in detriment to performance.

Interpretable mimic learning [3] has drawn inspiration from model compres-
sion [4] to reduce this trade-off. Model compression consists of approximating
a function learned by a slow and complex model with a faster and simpler model
with comparable performance [4]. Although first used with the goal of compress-
ing the knowledge learned by a model ensemble into a shallow neural network, it
can also be used to mimic other complex models such as deep neural networks.

Ba and Caruana [5] demonstrated, using mimic learning, a variant of model
compression, that shallow neural networks could, in principle, learn as accu-
rate functions as the ones learned by deep nets, but current training algorithms
would not allow it. This was generalized by distillation [6], which works by
using a transfer set to train the complex model with cross-entropy and softmax
with high temperature (T) and using these soft predictions to train the distilled
model also with high temperature. At test time, the distilled model is used
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with temperature 1. They demonstrated that the use of logit is a special case of
distillation when T is high compared with the magnitude of the logits.

While the motivation of the the above model compression approaches was
the reduction of the required storage and computational power at test time, by
teaching interpretable models we can obtain another advantage, interpretabil-
ity. Recent work on interpretable mimic learning [3] showed that it is possible to
extract knowledge from deep learning models and use it to produce simpler and
more intepretable models, without decreasing performance. They presented two
different training pipelines, one in which the soft labels of the deep model are
directly used to train the mimic model (i.e. Feed-forward Networks and Gated
Recurrent Units), replacing the labels of the training set. In the second pipeline,
the activations of the last hidden layer, Xnn, are used to train a helper classifier,
and the soft predictions of the helper classifier are used to train the mimic model.
But the chosen mimic model’s interpretability is limited to feature importance
and selection of representative decision rules, and this approach was intended
for binary classification, leaving ordinal classification, still to be explored.

Standard classification algorithms for unordered problems can be used for
classification of ordinal problems but with loss of information. Regression tech-
niques have also been used, by transforming the nominal classes into numeric
values and returning the predicted labels back to discrete values to obtain the
final predicted labels [7]. The weakness of this methodology is that the real dis-
tances between classes are, in a typical ordinal problem, unknown and context-
dependent.

To this end, an ordinal mimic learning approach was proposed, extending in-
terpretable mimic learning [3] for ordinal classification, producing interpretable
models which mimic the predictions of complex neural networks. The contribu-
tion of the present work is a new framework for ordinal mimic learning validated
on 19 datasets.

2 Ordinal Interpretable Mimic Learning

Ordinal interpretable mimic learning extends interpretable mimic learning [3],
generalizing the two pipelines for binary classification, to problems with ordi-
nal classes. By combining the two training pipelines from [3] with two ordinal
approaches, Multiclass and Frank&Hall [8], we can obtain interpretable models
that mimic complex models.

We propose four architectures that combine the pipelines in [3] and two
ordinal approaches, Multiclass and Frank&Hall [8]. In Pipeline 1 (Figures 1a
and 2a), we train the complex model(s) (e.g. feed-forward neural networks) using
the training set {X, y}, composed of the original features X and the targets y,
obtaining the soft predictions of the training set, yc. An interpretable model is
then trained to mimic the complex model, using as input {X, yc}.

In Pipeline 2 (Figures 1b and 2b), the activations of the last hidden layer of
the complex model(s), Xnn, are used in combination with the original targets
y, to train Helper Classifier. We then take the soft predictions of the Helper
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Classifier, yc, and the original features, X, and train the interpretable model.

(a) Pipeline 1 (b) Pipeline 2

Fig. 1: Illustration of the Multiclass Mimic Learning approach

(a) Pipeline 1 (b) Pipeline 2

Fig. 2: Illustration of the Frank&Hall Mimic Learning approach for a 3-class
problem

In both pipelines, at testing time, the classification of unseen samples is per-
formed using only the mimic interpretable model(s). In the Multiclass approach
(Figure 1), only one K-class classifier is trained and the soft predictions are
weighted according with the class label. By weighting the soft predictions, the
K class probabilities are combined into one numeric using the following equation:

yc =
K∑

k=1

[k ∗ Pr(V = Vk)] (1)

In the Frank&Hall architecture (Figure 2), the K-class classification problem
is divided into K − 1 classification problems. Each classifier i learns to differ-
entiate classes C1, . . . , Ci from classes Ci+1, . . . , CK . For each binary problem,
we train a complex model, a Helper Classifier (in case of the pipeline 2), and an
Interpretable Model. The predictions of each interpretable model are combined
so that, for the case of a 3 class problem, if the two models agree with value -1
the result is class 1, if they agree with value 1 than the result is class 3, otherwise
the result is class 2.

So far, we have considered as a complex model, a neural network with k
neurons on the output layer. For pipeline 1, this can be generalized to any
multi-class classifier capable of producing class probabilities1. In the case of
pipeline 2, the use of the activations of the last hidden layer of the complex
model, Xnn, restricts it to neural networks.

1When using multi-class classifiers with outputs in the range [1,k], the output can be used
directly with no need to apply Equation 1.
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3 Experimental setup

The ordinal datasets include the ones used in [9]2, which were used for benchmark
different ordinal approaches, as well as two heathcare datasets described in [10,
11], where the use of the ordinal nature of the response to cancer treatment
could improve its prediction. Feature selection was made using Neighborhood
Component Analysis [12] or ReliefF [13], which are filter methods (independent
from the classification method) and suitable for multi-class classification.

We tested three different types of inputs for the mimic model, softmax, double
and neighbor. The softmax is the one illustrated in Figures 1 and 2, where the
input is {X, yc}. In the double we train the interpretable model with the original
dataset concatenated with the one with soft labels, {XX, yyc}, represented on
equation (2). For the neighbor, we discard the samples that the complex model
classifies incorrectly, {XX ′, yy′c}, represented on equation (3).

{XX, yyc} =
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Three interpretable supervised methods were selected to validate our approaches:
Linear Regression, Regression Tree and Symbolic Regression; and a Feedfoward
Neural Network (FNN) as our complex model.

All the above models were trained using MATLAB’s (v. 9.3.0.713579) default
parameters, excluding the FNN’s hyperparameters which were tuned using grid
search by exploring the number of hidden layers, nH ∈ {1, 2, 3, 4, 5}, and the
number of hidden units, nHU ∈ {16, 32, 64, 128, 256, 512}.

4 Results

The algorithms were ranked by the average MAE, obtained using leave-one-out
cross-fold validation on the healthcare datasets and over 2-folds on the other
datasets, and the datasets were grouped according to the number of features, as
shown in Table 1.

2available at http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip
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Table 1: Top 10 ranked algorithms for datasets grouped based on number of
features and ordered by approach. FS, Pl, Classif, m and AR stand for feature
selection, pipeline, classifier, number of features and average rank respectively.
The top 5 algorithms’ ranks based on the number of features are highlighted in
bold.

Approach Pl Input FS Classif m=1-4 m=5-25 AR
Multiclass 2 Double none RT 5 1 3.0
Multiclass 1 Softmax none RT 6 3 4.5
Multiclass 1 Softmax NCAreg RT 7 4 5.5
Multiclass 1 Neighbor none RT 10 2 6.0
Multiclass 1 Double none RT 9 5 7.0
Multiclass 2 Neighbor none RT 8 6 7.0

Frank&Hall 2 Softmax NCAreg SR 2 7 4.5
Frank&Hall 1 Softmax none SR 3 8 5.5
Frank&Hall 2 Softmax none SR 1 10 5.5
Frank&Hall 2 Softmax none RT 4 9 6.5

Based on Table 1 we can see that both Frank&Hall and Multiclass approaches
reach the top 10 while no interpretable model that does not use the mimic
approach did. We can also see that Frank&Hall methods did better on datasets
with fewer features (< 5). We believe this happens because the models perform
worse with fewer features, so by predicting a mid-class when different classifiers
are disagreeing the Frank&Hall method avoids making bigger mistakes.

From Table 1, we can see that Multiclass with double and neighbor perform
better with more than 4 features. This is in line with the general observation
that “the optimal number of features increases with increasing sample size”3 [14],
since double and neighbor are trained with augmented datasets.

Also in Table 1, we can see that every Frank&Hall approach reaching the
top 10 is instantiated with softmax, indicating that, for Frank&Hall, softmax
predictions do better than double and neighbor. This may be because, by using
hard predictions which can only take opposing values 0,1 rather than values in
between [0,1], predictions of the different binary classifiers might disagree more.

Frank&Hall (MAE = 1.3, std = 1.0) algorithms show higher mean MAE
and standard deviation than Multiclass (MAE = 0.6, std = 0.4), which indicates
that this simplified ordinal classification approach may not capture correctly the
ordinal nature of the classes.

5 Conclusions

In this paper, an ordinal interpretable mimic learning framework was proposed
to solve the performance versus interpretability trade-off in the context of ordinal
problems. Results show that the interpretable models trained to mimic complex
models outperform the models trained directly on the original datasets.

3A warning should here be made to the fact that the optimal-feature-size relative to the
sample size depends not only on the classifier but also the feature-label distribution [14].
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The main focus of our future work will be to explore strategies that bring in-
terpretability to a local level, such as LIME [15]. It is also important to recognize
that our conclusions are limited to the scope of the datasets and models used,
therefore further work must be done to validate our approach on more complex
problems, such as time series classification. Additionally, we will investigate the
effectiveness of our approach with other ordinal classification methods such as
data replication [16].
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