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ABSTRACT OF THE DISSERTATION

Expanding the Scope of Genome-scale Models of Metabolism and Gene
Expression

by

Colton Joseph Lloyd

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2019

Bernhard O. Palsson, Chair

The cost of whole genome sequencing has declined precipitously over the past two decades.

This reduced cost of data collection has contributed to a deluge of multi-omics data types for Es-

cherichia coli and other commonly studied microbes. As a result, methods to obtain actionable

information from whole genome sequencing and other omics data have become increasingly valu-

able. Here, we broaden the scope of genome-scale models, thus allowing them to add context to

multi-omics data and add insight into E. coli metabolism. First, we outline a new computational

framework, COBRAme, that empowers the use and facilitates the reconstruction of models of

xiv



metabolism and gene expression (ME-models). These models offer a comprehensive method to

study protein use in microbes and how their metabolism is impacted by the evolutionary pres-

sures to allocate proteome most efficiently. Previously, ME-models were prohibitively difficult

to use, but the development of COBRAme has optimized the ME-model reconstruction process

making them smaller, easier to understand, and quicker to solve. Second, the next-generation

E. coli metabolic modelcomposing the metabolic core of the ME-modelis detailed. It was fur-

ther demonstrated that such models can be applied to contextualize multi-omics data types and

broaden our understanding of E. coli as a species. Third, adding to the species characteriza-

tion of E. coli, we leveraged the E. coli ME-model to study how enzyme cofactor availability

can shape condition-dependent metabolism. Given that some strains of E. coli are auxotrophic

for cofactors, this information provides insight into the consequence and evolutionary drivers of

auxotrophy. Lastly, a community E. coli ME-model was constructed to study the adaptation

of syntrophy in co-cultures of E. coli auxotrophs. The model provided predictions of how the

proteome efficiency of strains in co-culture could affect community characteristics. The totality

of this work demonstrates that the scope and applications of these models can be expanded to

obtain valuable information about the characteristics of E. coli as a single strain, a species, and

in community.

xv



Chapter 1

The promise of systems biology

Some 60 years ago, the promise of molecular biology held that if we knew and understood

the function of the molecules that comprise cells, then we could understand cells and their

functions. Although this was true in principle, the sheer number of molecules made it very

difficult to comprehend so many simultaneous functions. Thus, to fulfill this promise, systems

analysis is needed.

The simultaneous measurement of members of whole classes of biomolecules became possi-

ble over the past two decades (metabolomics, lipidomics, proteomics, etc) . In addition, methods

(ChIP-Exo, Ribo-Seq, PPI, etc) have been developed to measure interactions between large num-

bers of biomolecules. Consequently, there are a growing number of datasets available that give

us the molecular composition of cells under a certain condition. Many of the chemical interac-

tions (i.e., mechanisms) between many of these components are now known and this knowledge

gives rise to reconstructed biochemical reaction networks on a genome-scale that underlie various

cellular functions. Structured representations of this information can be converted into a math-

ematical form enabling computation and model building. Thus the formulation of in silico cells
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became possible that represent their in vivo counterpart based on our current state of knowledge.

In silico cells became a foundation of the bottom-up approach to systems biology.

1.1 Reconstructing the In Silico Cell

Systems biology is not focused so much on the biomolecules themselves, but rather on

the activity of the links (i.e., their chemical and physical interactions) that connect them, and

the computation of functional states of reconstructed networks. Functional states of networks

correspond to observable physiological or homeostatic states. Completing quantitative relation-

ships between the chemical components of a cell (with their genetic bases) and their physiological

functions is the promise of (molecular) systems biology. This undertaking represents the de facto

construction of a high-dimensional mechanistic genotypephenotype relationship.

As an example of the systems biology approach, we illustrate computational prediction

of essential genes, and synthetically lethal gene pairs, based on genome-scale metabolic models.

Predictions of gene essentiality are made by computing the growth capabilities ( i.e. the synthesis

of all biomass components in the right ratios) of an in silico cell by removing the activities of a

single gene. Synthetic lethals can be predicted by simultaneously removing two genes from an in

silico cell and computing its growth capabilities. These predictions represent perhaps the largest

scale and most intricate computational predictions of phenotypes performed to date, reaching

hundreds of thousands of predicted experimental outcomes. The comparison of computed lethal-

ity and experimental measurement in a number of studies is shown in Figure 1.1 . The remainder

of this Chapter illustrates the concept of a network reconstruction, the formation of an in silico

cell (i.e., a computable knowledge base), and its uses to understand biological functions.

2



Figure 1.1: The number of predictions made on growth screens that cross environmental con-
ditions with gene knockouts has grown steadily over the past 15 years. Over this time, both
single-gene knockout (SKO) predictions (red line) and double-gene knockout (DKO) predictions
(blue line) have become increasingly accurate. Figure is taken from [1]

Fundamentals of Constraints Based Reconstruction and Analysis (COBRA)

The underlying COnstraints Based Reconstruction and Analysis (COBRA) methods are

based on relatively simple concepts, but their application can result in non-intuitive, novel pre-

dictions. COBRA entails two fundamental steps ( Figure 1.2 ):

• The first step is the network reconstruction process described above. A reconstruction,

once mathematically represented, can distinguish between the possible and impossible phe-

notypic states. Basically, one can find the fundamental constraints that come with all the

interactions between the biomolecular components of a cell and form what is called a so-

lution space. This space contains all the allowable network states. It is analogous to the

term reaction norm used in ecology and genetics.

• The second step is to find the states within the solution space that are likely to represent the

homeostatic state of an organism. These states are found by using constraint-based opti-

3



Figure 1.2: With no constraints, the flux distribution of a biological network may lie at any
point in a solution space. When mass balance constraints (Sv=0) imposed by the stoichiometric
matrix S (labeled 1) and capacity constraints imposed by the lower and upper bounds (ai and
bi) (labeled 2) are applied to a network, it defines an allowable solution space. The network
may acquire any flux distribution within this space, but points outside this space are denied by
the constraints. Through optimization of an objective function, one can identify an optimal flux
distribution that lies on the edge of the allowable solution space. Taken from [2]

mization methods. Optimization requires an objective function that describes the desirable

properties of the homeostatic state. Constraint-based optimization finds the best points

within the solution space based on the stated objective function. The most commonly used

objective function is growth rate, although many others have been studied. Ultimately,

the objective function describes distal causation, thus representing fundamental biological

causation.

Illustrative example

An overview of the COBRA method is shown in Figure 1.3 for a simple toy network,

though the same procedure is used to produce COBRA models at the genome scale. The key

differences being the number of reactions in the model and a few additional considerations, which

will be discussed below in Topic 3.

A COBRA model for the simple toy network shown in Figure 1.3 can be constructed

using the following steps. First, the stoichiometries for all of the reactions in the toy network
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Figure 1.3: Overview of constraint-based modeling method. The toy metabolic network dis-
played in the top panel can be simulated by converting it into a mathematical format as shown
in second panel. Doing so involved first converting the stoichiometry of all of the reactions in the
network into a matrix representation where the columns correspond to reactions, the rows cor-
respond to metabolites, and the matrix values correspond to the stoichiometry of the metabolite
in the reaction. Further, the upper and lower limits on each reaction must be defined as reaction
bounds, as shown. This representation can be converted into a linear programming problem
using available software and solved. The solution to this problem however is not unique and
the full range of possible solutions can be represented as a solution space, shown in the third
panel. Two of the labeled vertices of the solution space are shown overlaid on the network in the
bottom panel which are equally optimal solutions that produce the most reaction flux through
b2. These can be considered low byproduct and high byproduct solutions based on the amount
of metabolite byp excreted.

must be defined including all possible inputs (b1) and all outputs (b2 and b3) of the system. This

definition is trivial for the toy network shown, but when executing this process on a genome-
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scale, there are numerous additional considerations that must be addressed. Next, the catalog of

reactions must be transformed into a mathematical format that lends itself to computation. This

transformation is accomplished by constructing what is called a stoichiometric matrix, shown in

Figure 1.3. In this format, each column represents a unique reaction and each row a unique

metabolite. The numbers in the matrix thus indicate the stoichiometry of the metabolite in

each reaction, with negative numbers representing reactants, and positive numbers representing

products. The matrix entry is 0 if the metabolite does not participate in the reaction.

Constructing the stoichiometric matrix alone does not produce a useful COBRA model.

Bounds must be placed on the activity of each individual reaction as well. Bounds provide the

limits on the amount of flux each reaction can carry. In the toy example the units of the reaction

flux is ambiguous, but at the genome scale reaction fluxes have units of mmol per gram dry

weight of cell per hour. In the toy example, all reactions are irreversible and operate only in

the forward direction, indicated by reaction bounds being greater than or equal to 0 for each

reaction. If reactions operate only in the reverse direction and/or were reversible, the lower

reaction bounds would be below zero. Reaction b1 defines the input of species into the system,

which is metabolite A in the toy network and limited to 10 units of uptake flux (Figure 1.3). This

flux limitation is analogous to the substrate uptake rate for an organisms genome-scale model.

After defining the stoichiometric matrix and reaction bound constraints, we can define a

particular reaction to optimize (i.e., maximize or minimize its reaction rate, or flux) subject to

the constraints inherent in the model. One of the several freely available software tools can then

be used to compute with the model using a linear programming solver. Solutions to a COBRA

metabolic model are non-unique, meaning there are an infinite number of flux states that can

produce an optimal result. The full extent of fluxes that satisfy constraints can be represented
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as a solution space, depicted as the polygon for the toy network in Figure 1.3. This example

shows all of the fluxes possible through reactions b2 and b3 given the stoichiometric and reaction

bound constraints. Two extremes of the solution space are shown. These are equally optimal

solutions that produce a maximum amount of flux through the b2 reaction.

Escherichia coli as a model organism for systems biology

The organism with the most extensive, validated, and widely-used COBRA model is

E. coli . As a model organism, many metabolic processes were first discovered in E. coli and

are best characterized in this organism. This rich E. coli bibliome has culminated in the recent,

most comprehensive COBRA model of E. coli K-12 MG1655, iML1515. Information regarding

the pathways and processes modeled in iML1515 and other high-quality models can be found at

bigg.ucsd.edu .

Scalability: from a strain to a species to infections on a national scale

Beyond predicted metabolic capabilities of the lab strain, the MG1655 model can help

us understand the E. coli species as a whole. An initial study of 55 sequenced E. coli strains

demonstrated the ability to predict auxotrophies and niche-specific nutritional requirements [3],

that were subsequently repeated with over 1200 strains [4].

Prediction from sequence alone opens up new possibilities. For example, using a genome

sequence of a clinical isolate, iML1515 can be used to construct COBRA models tailored to

that specific pathogen. With the number of sequenced clinical E. coli isolates, and those of other

major pathogens, increasing at a staggering pace (Figure 1.4), genome-scale models offer a means

to extract essential information that might lead to guidelines on how to treat a specific unique
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Figure 1.4: Increase in sequenced genomes for five common clinical pathogens. If current trends
are maintained, the number of sequenced genomes for all five pathogens will equal the number of
infections per year by 2022. The number of sequenced genomes per organism were obtained from
the Patric database. The infections per year were obtained from the Center for Disease Control
(www.cdc.gov) with the infections per year obtained for S. aureus from the Pew Charitable Trusts
(www.pewtrusts.org).

infection. If such predictions materialize, we can move the field of infectious disease closer to

truly personalized medicine. If the current rate of sequencing continues it becomes feasible by ca.

2021 to sequence all clinical isolates in the United States (Figure 1.4). A truly amazing prospect.

1.2 Modeling Metabolic Capabilities (M-models)

Pathway vs genome-scale networks viewpoints

Traditionally, microbiology is taught from a pathway or biochemical reaction perspective.

In reality, however, cellular survival relies on the activity of many such interconnecting pathways
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working in conjunction to produce the metabolites needed for growth in the proper amounts.

Beyond this, these individual pathways vary among species and even to some extent within

strains of the E. coli species itself. Obtaining actionable knowledge by mapping out the metabolic

pathways within an organism is difficult. To this end, systems biology methods provide the tools

that enable the use of this information to compute phenotypic and metabolic characteristics of

an organism despite the complex reality of cellular metabolism.

The power of systems biology can be illustrated by analyzing the 11 reaction linear

pathway to produce L-histidine from ribose. It is shown in Figure 1.5 as is it might be discussed

in a traditional microbiology book or class. What is typically glossed over, however, is the role

that cofactor or metabolic precursor availability may play in shaping the functioning of this

pathway or how the activity of any byproducts that are synthesized may affect other metabolic

activities in the cell. When using flux balance analysis to simulate the production of L-histidine

from ribose, 72 total reactions must be active in order to enable the function of the 11 reaction

pathway in a fully mass balanced way.

Why are these 61 extra reactions necessary?

L-histidine synthesis is an anabolic process relying on chemical or energetic contributions

from various metabolites in the cell. For three reactions in the pathway, energy from ATP is

required to fuel metabolic conversions or to transfer high energy phosphate bonds to L-histidine

precursors to fuel future metabolic conversions. Synthesizing ATP thus requires that some of the

substrate (glucose) is diverted from reactions in the L-histidine synthesis pathway to the pentose

phosphate pathway and, eventually, for glycolysis to produce ATP directly and indirectly by

producing charged NADH for oxidative phosphorylation. Further, L-histidine contains three
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Figure 1.5: Contrasting the traditional pathway (i.e., textbook) view and the network view (i.e.,
systems biology) of the biochemical processes needed to produce a single biosynthetic precursor.
The histidine biosynthetic pathway is considered ’long,’ being composed of 11 enzyme-catalyzed
reactions on 1 operon. When one examines all the biochemical reactions needed to synthesize
histidine from external substrates in a way that is fully mass-balanced, one discovers that a total
of 72 reactions are actually needed for a cell to synthesize histidine. Below we discuss the full
proteome requirement for such biosynthesis.

nitrogen atoms that it must acquire given that ribose does not contain nitrogen. One nitrogen

is incorporated from adenosine and the other two are added from L-glutamine and L-glutamate.

The pathways must then be active to incorporate inorganic nitrogen into these metabolites. Side

products of the pathway must also be degraded. One such byproduct of L-histidine synthesis is

5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide (AICAR) which is degraded to ADP
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in this example, though in vivo AICAR is used for inosine biosynthesis. Lastly, all NAD/NADH

cofactor usage must be balanced, meaning that NADH must be produced and consumed at equal

levels (Figure 1.5). Synchronizing all these functions requires a total of 61 active biochemical

reactions.

Networks are highly interconnected, and thus their characteristics can be non-

intuitive

Many important properties of the network cannot be determined based on simple char-

acteristics or intuition. For instance, there is no relationship between the predicted carbon yield

(i.e. the fraction of carbons in a substrate that end up in the product metabolite) and the num-

ber of reactions separating the substrate and product metabolite (Figure 1.6). Ribose, glucose,

and other metabolites with few enzymatic reactions separating them from L-histidine are actu-

ally capable of synthesizing L-histidine at a lower carbon yield than substrates separated from

L-histidine by many more intermediate reactions, like acetate.

Acetate, however, is a poor-quality substrate for E. coli , meaning that it grows slowly

when fed this metabolite. This is due to the fact that growth is dependent on the organism?s

ability to produce all biosynthetic precursors and energy necessary to grow from a given substrate.

Therefore, while acetate may be able to produce L-histidine efficiently, it is a highly oxidized

carbon source meaning that it cannot produce ATP as efficiently as substrates like glucose,

limiting its growth capabilities.
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Figure 1.6: Maximal aerobic carbon yield of L-histidine from 15 E. coli carbon substrates. The
number of active reactions required for each substrate to produce L-histidine is shown above each
bar.

From a single amino acid to synthesis of all biomass constituents

This systems-level analysis has shown that even the activity of a short, linear pathway

with few branch points relies on the interconnectivity of many different metabolic subsystems in

order to operate. Beyond this, all of the considerations discussed for the L-histidine biosynthesis

pathway hold true for all other essential biosynthetic precursors that need to be synthesized in a

growing cell. For an organism to successfully synthesize the dozens of macromolecular precursors

and produce an adequate amount of energy needed to grow, all of these pathways must be active

and working in harmony.

In order to take the biosynthesis of these biomass constituents into account, COBRA
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models include a reaction called the biomass objective function. This function includes all of the

essential metabolites (i.e., structural components, biomass building blocks, cofactors and currency

metabolites, etc.) with empirically derived coefficients corresponding to their concentrations in

a growing cell. The flux through this reaction corresponds to the in silico growth rate of the

cell under the environmental conditions imposed. Since the production of each metabolite in

the biomass objective function must be produced in the proper amounts and in a fully mass

balanced way, the interconnectivity of the pathways producing each essential metabolite can

be fully accessed in model simulation. Remarkably, the power of systems science allows us to

perform these computations.

1.3 Modeling protein-limited growth (ME-models)

Proteome size is limited

The availability of protein within a growing cell is limited, to about 2 to 3 million protein

molecules per cell. Cells have therefore evolved to utilize the available proteome as efficiently as

possible. This optimization of proteome investment has led to certain unintuitive and sometimes

seemingly ’wasteful’ growth phenotypes (e.g. acetate overflow in E. coli or the Warburg effect

in cancer cells) that require the consideration of protein cost to be accurately described and

understood. While the COBRA methods described in Topics 2 and 3 have proven effective in

computing the metabolic potential and characteristics of an organism, they do not account for

protein costs. In other words, metabolic network models do not consider the proteome investment

required to synthesize the enzymes that catalyze flux through a metabolic network.

This lack of consideration of proteome cost means that any two pathways converting

metabolite A to metabolite D are treated equally by the model regardless of the efficiency of
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the enzymes catalyzing the reactions, the length of the pathways, or the metabolic investment

required to synthesize the enzymes making the metabolic conversions. Using an economic analogy,

the ?operating expense? of a metabolic reaction is accounted for in a metabolic model, but not

the ?capital expense? required to build the protein that catalyzes the reaction. Ignoring proteome

costs can lead to metabolic model predictions of incorrect or unrealistic pathway activity and

the presence of alternative optimal reaction flux states (Figure 1.3).

Genome-scale models can compute proteome composition

COBRA models have been developed that explicitly describe the processes involved in

gene expression and proteome synthesis. These genome-scale models of proteome synthesis im-

pose a biosynthetic cost of catalyzing a metabolic reaction in the model by requiring the synthesis

of the catalyzing enzyme in order for a reaction to carry flux. They are called ME-models, for

Metabolism and Expression.

Proteome cost is imposed by considering the dilution of macromolecules to daughter cells

as the organism grows and divides (Figure 1.7A). The faster the cell is growing, the more the

macromolecules are passed on and therefore must be replaced through model synthesis. This

relationship provides the basis for genome-scale models of proteome synthesis and their ability

to link the synthesis of a macromolecule to the reaction which it catalyzes. For a more thorough

explanation on this computational method, refer to [5, 6].
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Figure 1.7: ME-model overview and capabilities. A. A depiction of each of the major cellular
processes involved in gene expression, all of which are modeled in gene expression models. B.
In order for a single genome-scale model of proteome synthesis (ME-model) to solve, multiple
processes involved in cellular growth must be reconciled. For example, the cellular reaction flux
state must be supported by the proteome catalyzing all of these processes. The proteome, in
turn, is itself supported by biomass precursor synthesis. The biomass precursor demand for the
proteome then informs the optimal metabolic flux state. Solutions of ME-models can then be
validated against disparate OMICs data types (i.e., 13C fluxomics, proteomics, etc.). Panel A is
from [6].

Proteome limitations lead to optimal proteome allocation that can be a governing

constraint

How do ME-models improve the framework we introduced in Topic 2? First, the nu-

trient uptake and metabolic reaction fluxes are determined by optimal protein utilization as a

consequence of limited proteome availability. By accounting for proteome constraints, and the

assumption of efficient protein allocation, nutrient uptake rates are computed accurately. In

addition, ME-model solutions more accurately estimate the metabolic flux distribution by elim-

inating biologically infeasible, alternative optimal flux distributions (described in Topic 2) that

do not satisfy the proteome constraint. This optimal solution of a ME-model is often unique.

Second, the relative abundance of proteins and other macromolecules required to support the

metabolic phenotype is predicted by a ME-model. These macromolecule fluxes provide novel

predictions of macromolecular expression that can be compared against proteomics data or other
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numerous OMICs data types (Figure 1.7B). The unique predictions enabled by ME-models open

entirely new avenues of biological questions and discovery.

1.3.1 The condition-dependent proteome

The genome-scale computation of the composition of the proteome is just the first step

in computationally representing a functioning proteome. To become functional, many proteins

require post-translational modification and engraftment of prosthetic groups. Additionally, there

are constant degradative forces operating on a proteome. Remarkably, with the chemical basis

for these functions, they can be explicitly reconstructed and added to ME-models that compute

the composition of the proteome. Here we briefly describe how such in silico models of whole

cells deal with, 1) the function of iron in the functional center of enzymes, and 2) how chaperones

keep the proteome correctly folded in the face of thermally caused protein misfolding.

1) Functionalizing the proteome: metalloproteins

The catalytic activity of inorganic iron has played a central role in facilitating important

metabolic processes in organisms dating back to the beginning of life on earth. As a result, many

important processes in living cells still depend on the availability of iron in order to function

(Figure 1.8A). Using ME-models, we can predict how reductions in the availability of iron causes

the metabolic phenotype of E. coli to change. In agreement with experimental observations,

decreasing iron availability causes the cell to grow much slower and shift to secreting lactate

instead of acetate (Figure 1.8BC). The predicted causes of this shift is the reduced activity of

the metabolic enzymes that have iron in their catalytic site. The reduction of flux through the

iron-containing enzymes, causes the pathway shift.
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Beyond studying growth and metabolism under iron-limited conditions, ME-models have

been developed that incorporate damage and repair processes of iron-containing proteins in the

presence of oxidative stress. In doing so, these models have the capability to correctly predict

amino acid auxotrophies in E. coli when exposed to elevated oxidative stress in superoxide

dismutase mutants [7].

These two examples highlight the importance of accounting for the metallo-proteome

when fully modeling cell metabolism. Both the availability of iron and oxidation load on iron

can be described by elementary processes and thus included in an in silico model of a cell.

2) The physical integrity of the proteome: proteostasis

Beyond incorporating vital coenzymes, prosthetic groups or metal ions, proteins must

also be properly folded to enable their proper catalytic function. By incorporating chaperone

activity into these models we can now compute the systems level consequences of protein unfolding

and refolding (proteostasis). To begin to model the protein unfolding response, we must first

understand that proteins themselves have intrinsic capabilities to keep their shape. In a recent

study, we described how computing properties of individual proteins can determine when they

are targeted by the chaperones of E. coli (Figure 1.9) (Chen et al., 2017).

How are these protein properties incorporated into genome-scale models? The recently in-

troduced GEM-PRO pipeline (genome-scale models with protein structures) enables the curation

and computation of protein sequences and structures within genome-scale models (Figure 1.9A)

(Brunk et al., 2016; Mih et al., 2018). Thousands of 3D protein structures are solved experimen-

tally every year, thanks to efforts of structural biologists worldwide and programs such as the

Protein Structure Initiative (Montelione, 2012). However, a large gap remains between known

17



Figure 1.8: Modeling iron-limited growth. A. Central carbon metabolism with the reactions
catalyzed by iron-containing enzymes in red B. In silico predictions of relative growth rate and
metabolic byproduct secretion when under varying levels of iron limitation. C. These in silico
predictions agree with experimental measurements of E. coli growing in iron limitation. Parts B
and C adapted from [8].

structures and the total number of annotated open reading frames within sequenced genomes.

Due to this gap, structural information remains incomplete for a number of reasons, such as the

protein (membrane proteins are difficult to crystallize) or organism of interest (some organisms

are not as well studied). Fortunately, for model organisms such as E. coli , we have now reached

a point where structural information is available or can reliably be predicted for a large portion
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of the expressed proteome. This enables what is broadly known as a structural systems biology

for genome-scale models.

Once a GEM-PRO has been generated for E. coli , we can then predict or compute

protein properties as a function of temperature from first principles (Figure 1.9B). Incorporating

two major chaperone systems and their folding networks (Figure 1.9C) to the ME-model thus

allows us to understand how changes in these protein properties affect the systems-level response

to changes in temperature. This model, named foldME, thus enables a surprisingly accurate

prediction of relative growth rates under different temperatures (Figure 1.9D). Furthermore,

foldME allows us to inspect changes in the production levels of certain proteins (i.e., the cells

proteome allocation). Under high temperatures, there is a dramatic shift toward the production

of chaperones while shifting away from the production of cytoplasmic proteins (Figure 1.9E).

Thermostability has often been a property studied in the context of individual proteins, or

as a global phenotypic response. FoldME exemplifies how incorporating atomic-level information

can expand the systems biology paradigm, and it provides an understanding of how a cell balances

its protein production and maintenance (folding) machinery under thermal stress.

1.4 Multi-strain reconstructions enable assessment of strain

variation

Genomic sequences from multiple strains allow us to ponder the definition of a species.

As shown in Figure 1.4, there has been a staggering increase in the number of sequenced strains

of E. coli . These sequenced genomes have allowed us to adapt reconstructed COBRA models

to inspect variation at both the gene-level (i.e., absent metabolic reactions that may cause aux-
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Figure 1.9: Utilization of protein structural properties within a genome-scale model for the
purpose of modeling thermal stress adaptations. A) The formal integration is termed a GEM-
PRO, or genome-scale model with protein structures. Enzymatic reactions are mapped to their
corresponding protein sequences and structures. B) Protein-specific properties can be predicted
from sequence and structure, and further computed to reflect protein property changes under
stress. For example, four parameters are chosen to represent the influence of temperature on the
status of the structural proteome (Chen et al., 2017)). C) Incorporation of chaperone folding
networks adds the proteostasis network response to the model. D) Simulated growth rates of an
integrated model match very closely to measured experimental rates at different temperatures.
E) Proteome allocation of the cell under thermal stress can be inspected to find a dramatic shift
towards chaperone production at high temperatures. Adapted from [9] and [10].

otrophies) and at the base-pair level (i.e., changes to a protein sequence and their impact on

structure). This sequence data availability brings into focus the question: what is a strain and

what is a species? A comprehensive comparison of the metabolic capabilities of 55 strains of and

Shigella revealed that these strains can adapt to catabolize nutrients with alternate pathways.

This result exemplifies how COBRA models provide utility by predicting a strains environmental

niche. This approach has been applied to characterize differences in industrial strains of E. coli ,

the aquatic bacterium Shewanella, Staphylococcus aureus, Leptospira, and Pseudomonas putida.

Structures can provide a template for analyzing sequence variation. However, some path-

ways are often quite conserved and essential in many organisms. The L-histidine biosynthesis
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pathway, for instance, is known to be essential across bacteria, fungi, plants, and archaea, and

is present in most strains of E. coli . As such, differences in this pathway among strains must

now be probed at a deeper level to begin to understand what enables the broad diversity within

a single species. An initial analysis of sequence-level variation in over 1000 clinical isolates of

E. coli revealed a large number of alleles (unique variant forms of the protein) for enzymes in

L-histidine biosynthesis and a number of other pathways related to amino acid synthesis (Fig-

ure 1.10A). This analysis was then coarse-grained to consider protein domains, which can be

thought of as the functional units of proteins. This domain-level analysis indicated that the

aldehyde dehydrogenase (ALDH-like) domain has, on average, more variation across all studied

strains compared to other domains (Figure 1.10B). The last enzyme in L-histidine biosynthesis,

hisD, contains this ALDH-like domain and had one of the highest counts of alleles, as well as

number of mutations conferring an allele (Figure 1.10C, 10D). The potential for further charac-

terization of these enzymes due to these variations remains, as these are but clues to begin to

understand the true relationship between genotype and phenotype.
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Figure 1.10: Analyzing strain variation in E. coli at multiple levels. A) Inspecting variation at
the pathway level shows that membrane lipid metabolism and a number of amino acid synthesis
pathways top the list of average number of changes in their catalyzing enzymes. B) Incorporating
protein domains into the analysis points out specific domains that contain this variation. C) 976
genes with metabolic functions are conserved across 99% of E. coli strains, and this core set
also has mutations. The bar chart shows the average number of amino acid mutations in these
core genes for 1,122 strains of E. coli . D) Histidine pathways showed high levels of amino acid
differences among genes involved. The pie chart represents the percentage of strains that contain
unique hisD alleles. The hisD allele in E. coli K-12 MG1655 is present in only 19 (1.7%) of the
clinical isolates. Adapted from [4].
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Chapter 2

A computational framework to

empower ME-model development

Genome-scale models of metabolism and macromolecular expression (ME-models) explic-

itly compute the optimal proteome composition of a growing cell. ME-models expand upon the

well-established genome-scale models of metabolism (M-models), and they enable a new fun-

damental understanding of cellular growth. ME-models have increased predictive capabilities

and accuracy due to their inclusion of the biosynthetic costs for the machinery of life, but they

come with a significant increase in model size and complexity. This challenge results in models

which are both difficult to compute and challenging to understand conceptually. As a result,

ME-models exist for only two organisms (Escherichia coli and Thermotoga maritima) and are

still used by relatively few researchers. To address these challenges, we have developed a new

software framework called COBRAme for building and simulating ME-models. It is coded in

Python and built on COBRApy, a popular platform for using M-models. COBRAme streamlines
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computation and analysis of ME-models. It provides tools to simplify constructing and editing

ME-models to enable ME-model reconstructions for new organisms. We used COBRAme to

reconstruct a condensed E. coli ME-model called iJL1678b-ME. This reformulated model gives

functionally identical solutions to previous E. coli ME-models while using 1/5 the number of

free variables and solving in less than 10 minutes, a marked improvement over the 6 hour solve

time of previous ME-model formulations. Errors in previous ME-models were also corrected

leading to 52 additional genes that must be expressed in iJL1678b-ME to grow aerobically in

glucose minimal in silico media. This manuscript outlines the architecture of COBRAme and

demonstrates how ME-models can be created, modified, and shared most efficiently using the

new software framework.

2.1 Background

Genome-scale metabolic models (M-models) have shown significant success predicting var-

ious aspects of cellular metabolism by integrating all of the experimentally determined metabolic

reactions taking place in an organism of interest [1–4]. These predictions are enabled based on the

stoichiometric and thermodynamic constraints of the organisms metabolic reaction network and

the metabolic interactions with the environment. M-models are capable of accurately predicting

the metabolic capabilities of an organism, but they require defined substrate input constraints

and empirical metabolite measurements to make predictions of its growth capabilities. Therefore,

a focus of development in the field of genome-scale models has been to increase the scope and

capabilities of M-models [5].

Recently, M-models have been extended to include the synthesis of the gene expression

machinery which can be used to compute the entire metabolic and gene expression proteome
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in a growing cell [6–9]. These ME-models integrate Metabolism and Expression on the genome

scale (Figure 2.1), and they are capable of explicitly computing a large percentage (up to 80% in

some cases) of the proteome by mass in enterobacteria [10]. In other words, ME-models not only

compute optimal metabolic flux states, as with M-models, but they additionally compute the

optimal proteome composition required to sustain the metabolic phenotype. ME-models enable

a wide range of new biological questions that can be investigated including direct calculations of

proteome allocation [11] to cellular processes, temperature dependent activity of the chaperone

network [12], metabolic pathway usage, and the effects of membrane and volume constraints [7].

Furthermore, their ability to compute the optimal proteome abundances for a given condition

make them ideal for mechanistically integrating transcriptomics and proteomics data.

So far ME-models have been constructed for only two organisms, Thermotoga maritima

[8] and Escherichia coli K-12 MG1655 [6, 7, 9, 13]. The slow pace of ME-model construction

can be attributed to two basic challenges. First, ME-models are much slower to numerically

solve than M-models; it takes 5 orders of magnitude more CPU time to solve iOL1650-ME [6]

than it does the corresponding iJO1366 M-model [14] ( 6 hrs for iOL1650-ME vs 100 ms for

iJO1366). Therefore while M-models can be solved on personal computers, ME-models have

required large clusters or supercomputers to parallelize simulations. Second, the large model

sizes and complex structure have made analyzing and debugging the model difficult and time

consuming. M-models can use generalized software tools [15–19], but each organisms ME-model

has required its own dedicated codebase and database schema, which makes advances for one

organisms model difficult to apply to another organism. Therefore, each organisms ME-model

has required dedicated person-years of effort.

We addressed these challenges by developing a computational framework called CO-
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Figure 2.1: Multi-scale processes modeled in a ME-model depicted in a dividing E. coli cell.
ME-models expand upon underlying M-models by explicitly accounting for the reactions involved
in expressing genes which are required to catalyze enzymatic processes. The synthesis of each
major macromolecule is coupled to the reaction that it is involved in by accounting for its dilution
to daughter cells during cell division. Each dilution is a function of growth rate (µ).

BRAme for building, editing, simulating, and interpreting ME-models. COBRAme is written

in Python and extends the widely used COBRApy software that only supports M-models [18].

COBRAme is designed to: 1) support any organism with an existing M-model; 2) use protocols

and commands familiar to current users of COBRApy; 3) represent ME-models with an intuitive

collection of Python classes; and 4) solve FBA simulations orders of magnitude faster than pre-

vious ME-models [6]. As a result of the above considerations, we hope that COBRAme and its

associated tools will accelerate the development and use of models of metabolism and expression.
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2.2 Design and implementation

Software dependencies

The COBRAme software (S1 File) is written entirely in Python 2.7+/3.5+ and requires

the COBRApy [18] software package to enable full COBRA model functionality. Additionally,

COBRAme requires the SymPy Python module [20] in order to handle the symbolic variable

representing cellular growth rate (), which participates as a member of many stoichiometric co-

efficients in the ME-model. The BioPython package [21] is used by COBRAme to construct

transcription, translation, and tRNA charging reactions for each gene product in the organisms

genbank genome annotation file. The ME-model is solved using the SoPlex [22, 23] or quadMI-

NOS [24] solvers via APIs written in Python and included as part of this project. Further, the

ECOLIme Python package is included in this work (S2 File) and contains information pertaining

to E. coli gene expression and scripts to build iJL1678b-ME starting with the E. coli metabolic

model, iJO1366 [14]. ECOLIme can further act as a blueprint for ME-model reconstructions of

new organisms.

ME-model architecture

Constructing a ME-model requires assembling information pertaining to many different

cellular processes. For instance, in order to construct a translation reaction for the ME-model,

the sequence of the gene, the codon table for the organism, the tRNAs for each codon, ribo-

some translation rates, elongation factor usage, etc. must be incorporated. Further, several

processes in the ME-model recur for many genes that are transcribed or translated due to their

template-like nature [13]. To address these challenges, the COBRAme ME-model was structured

to compartmentalize information for individual cellular processes. A key component of this ap-
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proach was the separation of the ME-model into two major Python class types: the information

storage vessels called ProcessData and the functional model reactions called MEReaction, which

is analogous to the COBRApy Reaction.

ProcessData

COBRAme constructs ME-models that are composed of two major Python classes. The

first of these is the ProcessData class, which is used to store information associated with a

cellular process. The type of information contained in each ProcessData type is summarized

in the COBRAme Documentation (http://cobrame.readthedocs.io/, S4 File). This method of

information storage has several advantages over alternatives such as establishing a database to

query information as it is needed, which was the approach used to build previous ME-model

versions. For example, this method simplifies the dissemination of the information used to

construct a ME-model given that the information can now be included as part of a published

ME-model without requiring the user to install and populate a database. Further, this gives the

ability to compartmentalize the information based on which cellular processes it elucidates. By

storing this information in Python objects, methods can be implemented to further allow data

contained in each ProcessData instance to be manipulated. This method also reduces error by

enabling many features to be computed using defined inputs in a consistent way. For example,

the amino acid sequence for a protein can be dynamically computed and used to construct a

TranslationReaction instance using a genes nucleotide sequence and codon table (Table 2.1, S5

File).
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Table 2.1: Overview of all ProcessData subclasses.
ProcessData Subclass Information Contained Example Number in

iJL1678b-ME

StoichiometricData Metabolite stoichiometry of a metabolic reac-
tion (often equivalent to M-model reaction)

HISTD 2282

ComplexData Protein subunit stoichiometry of an enzyme
complex as well as the modifications required
for its activity

CPLX-153 1445

SubreactionData Some processes occur in multiple steps (e.g.
translation reactions) or require modifications.
This class details the stoichiometry and cat-
alytic enzyme associated with the process.

ala addition at GCA or
mod 2fe2s c

353

TranscriptionData Nucleotide sequence, RNA products, sigma
factor usage, etc. for a given transcription unit

TU00001 from RpoD mono 1447

TranslationData Subreactions (tRNA mediated amino acid ad-
ditions), sequence of mRNA/protein, etc. for
a given mRNA being translated

b2020 1569

tRNAData Codon, amino acid, tRNA, and modifications
required to make a functioning tRNA

tRNA b0202 AUU 158

TranslocationData Keff, enzymes, metabolite stoichiometry of a
particular protein translocation pathway

srp translocation 9

PostTranslationData Details the translocation pathways, protein
modifications (for lipoproteins), etc. required
to produce a functioning protein.

translocation protein b0733 682

GenericData List of complexes or metabolites that are re-
dundant and represented as generics

generic Tuf 11

MEReactions

ME-models are multiscale in nature, meaning they contain reactions that operate on

dramatically different scales in time and space whose rates span 15 orders of magnitude [25].

Fast reactions (e.g., metabolic) are coupled to slow reactions (e.g., complex formation) through

coupling coefficients that determine the amount of macromolecule needed to catalyze particular

reactions. To facilitate this coupling and to handle the unique characteristics of each major

reaction type found in cell biology, the MEReaction Python class is used. The MEReaction

classes inherit all of the methods of a COBRApy Reaction. In addition to the functionality

of COBRApy Reactions, however, MEReactions contain methods to read and process the in-

formation contained in ProcessData objects and to update this information into a complete,

functional reaction. In many cases, part of compiling a ME-model reaction also includes impos-

ing the appropriate growth rate dependant coupling constraints (coupling constraints detailed in

30



Table 2.2: ProcessData types used to construct each MEReaction type.
MEReaction Type ProcessData Information Used Number in iJL1678b-ME

MEReaction None 2021
SummaryVariable None 22
MetabolicReaction StoichiometericData, SubreactionData, ComplexData 5266
ComplexFormation ComplexData, SubreactionData 1445
TranslationReaction TranslationData, SubreactionData 1569
TranscriptionReaction TranscriptionData, SubreactionData 1447
PostTranslationReaction PostTranslationData, TranslocationData, SubreactionData 682
tRNAChargingReaction tRNAData, SubreactionData 158
GenericFormationReaction GenericData 44

the COBRAme Documentation and Supplemental Text (S8 File)). These coupling constraints

are imposed directly as part of the MEReactions update method and can vary depending on

the reaction type. Since MEReactions are directly linked to the information used to construct

them through the associated ProcessData, this codebase has the ability to easily query, edit, and

update the information and metabolite stoichiometry constituting the MEReaction and therefore

the model (Table 2.2, S5-7 Files). Examples of how this ME-model architecture can be leveraged

to query and edit reaction information can be found in the COBRAme Documentation.

Most MEReaction types in COBRAme must be linked to at least one ProcessData in-

stance that defines the core information underlying the reaction being represented. The required

ProcessData for each reaction is listed in bold.

ME-model reconstruction workflow

ME-models of E. coli are reconstructed using the two Python packages presented here,

COBRAme and ECOLIme. COBRAme contains the class definitions and necessary methods

to facilitate building and editing a working ME-model. COBRAme is written to be organism-

agnostic so that it can be applied to ME-models for any organism. ECOLIme contains the

E. coli specific information (e.g., the E. coli ribosome composition) as well as functions required

to process files containing E. coli reaction information (e.g., the text file containing transcription
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unit definitions) and associate them with the ME-model being constructed. Therefore, ECOLIme

is required to assemble the reaction and gene expression information that comprises iJL1678b-

ME. COBRAme, on the other hand, supplies the computational framework underlying the ME-

model. The composition along with further demonstrations of the utility of each of these packages

is outlined in the COBRAme Documentation.

The procedure used to build iJL1678b-ME using COBRAme and ECOLIme is presented

in the building script, build me model (Figure 2.2). This script goes through each of the major

gene expression processes modeled in iJL1678b-ME and uses ECOLIme to load all the relevant

information. Once the information is loaded, it is used to create and populate ProcessData

instances associated with the information. Each of the ProcessData instances are then linked to

the appropriate MEReaction instance and updated to form a functioning ME-model (Figure 2.2).

Reformulating the E. coli ME-model

Significant efforts were made to simplify the ME-model while also optimizing the model

size, modularity, and time required to solve. These included: 1) reformulating the implementation

of explicit coupling constraints (metabolites) and 2) lumping major cellular processes such as

transcription and translation into single ME-model reactions. Further, a number of updates,

changes, and corrections have been made to the E. coli ME-model reconstruction which are

detailed below.

Macromolecular Coupling

The largest mathematical difference between the original ME-model formulation [6] and

COBRAme is the change in the macromolecular coupling implementation. Coupling coefficients

32



Ribosome 
Composi!on

tRNA 
Modifica!ons

Sigma Factor 
Network

M-model Gene
Sequences

Enyme Complex
Modifica!ons

. . . 

. . . 

. . . 

ME-model

StoichiometricData ComplexData Transcrip!onData Subreac!onData Transla!onData tRNAData

tRNAChargingReac!onTranscrip!onReac!on Transla!onReac!onComplexForma!onMetabolicReac!on

Figure 2.2: The flow of information from input data to the ME-model, as facilitated using
the build me model script. The build me model workflow uses the ECOLIme package to load
and process the E. coli M-model along with all supplied files containing information defining
gene expression processes/reactions. This information is then used to populate the different
ProcessData classes (shown in turquoise boxes) and link them to the appropriate MEReaction
classes (shown in red ovals), all of which are defined in the COBRAme package. The entirety of
the MEReactions comprise a working ME-model. Not all input data, ProcessData classes, and
MEReaction classes are shown. For a complete list, reference the COBRAme Documentation.

dictate the amount of macromolecule synthesis flux that is required for the reaction catalyzed by

that macromolecule to carry flux. They are derived based on the fact that, as a cell grows and

divides, it must dilute macromolecules to its daughter cells. Therefore, coupling constraints have

a general form of µ
keff

[6] (Figure 2.3). While these are essential in a ME-model to couple together

the various reaction types, in previous model versions they inflated the number of metabolites and

reactions contained in the ME-model (ME-matrix), resulting in longer solve times. COBRAme

improves coupling constraint implementation by directly embedding macromolecule dilution cou-

pling into its catalytic reaction (Figure 2.3).

A more thorough description of coupling constraints reformulations and their implemen-

tation can be found in the online COBRAme Documentation.
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Figure 2.3: An overview of the COBRAme ME-model formulation. The previous ME-models
implemented coupling constraints explicitly as model pseudo-metabolites. With COBRAme,
instead of using explicit coupling constraints (metabolites), dilution of coupled macromolecules
to the daughter cell is accounted for by embedding them directly in the reaction in which they
are used. For example, for the metabolic reaction shown above, a small amount ( µ

keff
) of the

catalyzing enzyme is consumed by the reaction in which it is involved. In other words, for a
given amount of flux carried by the metabolic reaction, µ

keff
· vmetabolic reaction of the catalyzing

enzyme must be synthesized. A subset of the major macromolecular coupling that is applied in
iJL1678b-ME is also shown, along with their representation in the ME-matrix. Reference the
COBRAme Documentation for derivations and further explanation of the coupling coefficients.

Reaction Lumping

Using equality constraints in the COBRAme formulation and splitting the model into

ProcessData and MEReactions allows for a variety of model simplifications. One major sim-

plification is that reactions which occur in a number of individual steps or sub-reactions (i.e.,

ribosome formation, translation, etc.) can be lumped into a single reaction. The single lumped

MEReaction can be constructed by associating it with the multiple ProcessData instances that
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detail the individual sub-reactions involved in the overall reaction. All sub-reaction information

is further accessible through the MEReaction instance itself which allows the information to be

queried, edited, and updated throughout the reaction. If the sub-reaction participates in many

different reactions, the changes can be further be applied throughout the entire model. This

lumping has the obvious benefit of reducing the number of model reactions, thus shortening the

solve time. Lumping complex reactions has the added benefit of making the ME-model much

more modular in nature. This simplifies the process of adding or removing new processes as-

sociated with the ME-model reaction. Examples of accessing and editing ProcessData through

MEReactions can be found in the COBRAme Documentation.

Nonequivalent Changes

Unlike the reformulations described above, some of the changes made in the COBRAme

formulation purposefully changed the model in a nonequivalent way. One of the most signif-

icant differences was assigning a dummy complex monomer with a representative amino acid

composition as the catalytic enzyme for orphan reactions. These are non-spontaneous reactions

which do not have a known enzymatic catalyst. The previous ME-model formulations modeled

these orphan reactions as spontaneous which resulted in a slight bias toward using these reac-

tions, given that they did not have an associated protein expression cost. This was corrected

in iJL1678b-ME. Additionally, in iJL1678b-ME, protein carriers (e.g., acyl carrier protein) are

assigned as catalysts to their transfer reactions. Therefore, iJL1678b-ME will require translation

of these carriers in order for them to participate in the reactions in which they are involved, thus

resulting in the expression of 52 more genes when simulating on glucose minimal media compared

to iJL1678-ME.
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Further, membrane surface area constraints imposed in iJL1678-ME were removed. This

constraint limited the number of membrane proteins that could be expressed at a given growth

rate. Protein competition for membrane space may play an important role in shaping E. coli

s metabolic phenotype, particularly when growing aerobically. Despite this, the constraint was

removed to prevent the model from being over constrained when growing in non-glucose aerobic

conditions, leading to unrealistic behavior. Removing this constraint makes iJL1678b-ME more

flexible and applicable to more in silico conditions. Similarly, growth-dependent surface area

calculations were used when imposing lipid demands, therefore they were also removed and

replaced with demands identical to those defined in the iJO1366 biomass objective function.

The protein translocation genes and pathways added when reconstructing iJL1678-ME, however,

remain in iJL1678b-ME.

Additional corrections and changes made when reconstructing iJL1678b-ME are outlined

in the Supplemental Text (S8 File).

Optimization Procedure

Unlike M-models, the stoichiometric matrix for each ME-model consists of numerous

growth rate (µ) dependent metabolite coupling coefficients and variable bounds (Figs 1 and 3).

This makes the ME-model nonlinear, meaning it cannot be solved as a normal LP like M-models.

The ME-matrix, however, is quasi-convex [25], meaning that, for any feasible substituted µ, all

smaller µ values will also be feasible. Therefore, the maximal feasible µ value can be determined

by a binary search or bisection algorithm wherein successive linear programs are solved at different

values of µ to find the largest value of µ that gives a feasible flux state, as done for iJL1678-ME

and iOL1650-ME. For each optimization, the production of a representative dummy protein is
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maximized. In doing so, it allows the same algorithm to be used for both batch and nutrient

limited growth, which required different procedures in iJL1678-ME and iOL1650-ME [6].

While any linear programming solver supported by COBRApy [18] could technically have

been used, ME-models are very ill-scaled [6], unlike M-models [26]. Therefore, two specialized

solvers are used due to their extended numerical precision, thus ensuring acceptable numerical

error: 1) qMINOS [23, 24], which supports quad (128-bit) numerical precision, and 2) SoPlex

[22], which supports ”long double” (80-bit) numerical precision as well as iterative refinement in

rational arithmetic to further reduce numerical error.

2.3 Results and discussion

Model Overview

The COBRAme framework was used to reconstruct a mass-balance checked, reformulated

version of the E. coli K-12 MG1655 ME-model iJL1678-ME, called iJL1678b-ME (S3 File). This

produced a model with 12,655 reactions and 7,031 metabolites (S6 and S7 Files), a marked

improvement over iJL1678-ME which contained 79,871 reactions and 70,751 metabolites. As a

result, iJL1678b-ME has a matrix with 80% fewer columns than iOL1650-ME. This dramatically

speeds up the solving procedure and allows processes such as iterative refinement, which uses

rational arithmetic and is unsuited for fast vectorized SIMD operations, to become feasible for

fast and accurate solutions (Figure 2.4, S8 File).

iOL1650-ME, constructed using COBRAme, was simulated in glucose aerobic minimal

media in silico conditions and compared against simulations from the previous iOL1650-ME ver-

sion. Both simulations were run using a selection of keff parameters that were fit to proteomics
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Figure 2.4: Flux variability analysis of reactions representing the expression of the Pgi enzyme
and the PGI metabolic reaction. The variability becomes negligible (the max and min possible
fluxes converge) for metabolic and translation fluxes when using a µ precision of 10−5 and for
transcription fluxes when using a µ precision of 10−5. There are two transcription reactions for
pgi to model transcription of this gene using two different sigma factors. The lower limit of
reaction flux values is set to 10−5 mmol · gDW−1 · hr−1 as this is close to the lowest value that
can be accurately represented in double-precision floating-point in Python. Note the maximum
reaction flux for the reverse direction of PGI does not drop to 10−5 mmol · gDW−1 · hr−1 by this µ
precision. However, considering the general scale of metabolic reaction fluxes (see Figure 2.5), the
maximum flux effectively drops to zero for practical purposes. High µ precision can be achieved
without sizeable increases in total solve time, using qMINOS. The ME-model simulations were
repeated nine times for each precision and the error bars represent the standard deviation of the
solve times.

data obtained from E. coli grown in multiple conditions [27]. The new model version gave very

similar (R2 > .98) fluxes when comparing model solutions on a transcription, translation, and

metabolic level (Figure 2.5) suggesting that the two models are practically identical, computa-

tionally. The reformulated ME-model cannot be expected to give completely identical solutions
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Figure 2.5: Comparison of the simulated fluxes of iOL1650-ME to the COBRAme generated
version of the same model at transcription, translation, and metabolic flux scales. All fluxes are
shown in pairwise comparison on the left using a log scale axis and separated into the major flux
scales to be shown on a linear axis on the right. In order for fluxes of 0 mmol · gDW−1 · hr−1

to appear, 0 fluxes have been replaced with 10−14 on the left plot. At each level, the models
provided comparable flux predictions (R2 > 0.98). The models cannot be expected to give
completely identical flux predictions due to the ME-model updates outlined in Nonequivalent
Changes. Since iJL1678b-ME does not contain membrane surface area constraints, iOL1650-ME
was used for comparison.

to iOL1650-ME due to some of the nonequivalent changes and model corrections described in

Nonequivalent Changes. Particularly, the RNA degradosome and RNA excision machinery was

slightly under expressed due to the change in stable RNA excision handling described in the

Supplemental Text (S8 File).

Computational essentiality predictions for both iJL1678b-ME and iOL1650-ME were com-
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Table 2.3: Essentiality predictions between iJL1678b-ME and iOL1650-ME.
Experimentally essential Experimentally nonessential

iJL1678b-ME essential 1070 (69.5%) 109 (7.1%)
iJL1678b-ME non essential 84 (5.5%) 276 (17.9%)

iOL1650-ME essential 1092 (71.0%) 87 (5.7%)
iOL1650-ME nonessential 119 (7.7%) 241 (15.4%)

pared against a genome-wide essentiality screen of single gene knockouts grown in glucose M9

minimal media [28]. Due to the corrections described above and in the Supplemental Text (S8

File), iJL1678b-ME displayed improved gene essentiality predictions when comparing essentiality

for the 1539 proteins also modeled in iOL1650. The bulk of these improvements stem from mod-

eling the expression of enzyme carriers as mentioned in Nonequivalent Changes. This correction

led to a 35 gene decrease in the number of false positive predictions made by iJL1678b-ME, but

also led to a 22 gene increase in true positives. Overall, the accuracy of the model improved

from 86.6% to 87.5%. Further, the Matthews Correlation Coefficient [29], a machine learning

metric to gauge the performance of binary classifiers, saw an increase of 7% from 0.616 to 0.659

(Table 2.3).

Predictions of essentiality are from a genome wide screen of Keio collection [30] knockouts

grown on glucose M9 minimal media [28].

Beyond performance and predictive capabilities, the reformulations and reduced size make

iJL1678b-ME more understandable to the user. By lumping cellular processes into individual

model reactions, the structure of the ME-model reactions is able to more closely resemble the

central dogma of biology. For instance, the translation of a given gene, ¡gene id¿, occurs in a

single model reaction, translation ¡gene id¿, where all components and coupling constraints are

applied in one place (Figure 2.3) as opposed to occurring in multiple, separate reactions. In

addition to being more easily understandable by the user, the reformulation makes the model

more amenable to visualization tools like Escher [19], further easing the process of interpreting
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simulation results.

2.4 Software availability and future directions

Both the COBRAme and ECOLIme software packages are required to construct

iJL1678b-ME and are currently available on the Systems Biology Research Groups Github page

(https://github.com/SBRG). Installation procedures as well as all necessary documentation re-

quired to build, simulate, and edit ME-models are present in the repository READMEs. The

qMINOS solver [24] is also freely available for academic use. Instructions for installing and using

the solver can be found as part of the solveme package [25]. Alternatively, the SoPlex solver

can be found at (http://soplex.zib.de/) and is freely available to all academic institutions. The

soplex cython package contains instructions to compile the soplex solver with 80-bit precision

capabilities along with the necessary code required to solve iJL1678b-ME with SoPlex. Builds

of COBRAme, ECOLIme, the qMINOS solver, and all dependencies can be further obtained

from Docker Hub (https://hub.docker.com/r/sbrg/cobrame/). The scripts and instructions for

locally building Docker images that include the above software as well as SoPlex can be found on

the COBRAme GitHub repository. This allows researchers to easily install and use ME-models

regardless of platform and enables cloud computing platforms for ME-model simulations. These

software packages will be actively maintained and improved. The COBRAme documentation can

be found on readthedocs (https://cobrame.readthedocs.io/). The scripts, data, and instructions

needed to reproduce the presented results can be found in the S3 File.
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Enable New ME-model Reconstructions

We anticipate that the presented software tools will facilitate the reconstruction of many

new ME-models beyond iJL1678b-ME for Escherichia coli K-12 MG1655. While the COBRAme

code was constructed to be readily applicable to many different organisms, it is likely that

some organisms will require additional features for their ME-model reconstruction that we did

not originally anticipate. It is our priority to continue to update and improve the code to

enhance its utility to model new, diverse organisms. Future efforts will be also be made to

create standards to govern how ME-models are reconstructed, structured, and shared within the

scientific community. This will include working with the systems biology community to develop

SBML [31, 32] standards capable of encoding the information required to reproducibly build and

simulate ME-models.
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Chapter 3

The next generation E. coli M-model

The big-data-to-knowledge grand challenge can be addressed using mechanistic bottom-

up reconstructions to productively integrate diverse data types at the genome-scale. Here we: 1)

Present a genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655,

named iML1515 , that accounts for 1,515 open reading frames, 2,719 metabolic reactions involv-

ing 1,183 unique metabolites, and 1,515 protein structures; 2) Validate iML1515 using growth/no

growth predictions from 23,620 growth conditions, obtained using a genome-wide knockout strain

collection grown on 16 different carbon sources, achieving greater than 93.4% prediction accu-

racy; and 3) Demonstrate: (i) how inclusion of protein structures allows the formulation of new

domain-based associations that enables multi-level multi-strain functional analysis of sequence

variations and is demonstrated through comparative structural proteome analysis of 1,122 E.

coli strains; (ii) how iML1515 can be used to build metabolic models of fresh E. coli clinical
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isolates that predict their metabolic capabilities; and (iii) how iML1515 can be used to build

metabolic models of E. coli strains present in the microbiome from metagenomic sequencing

data. Thus, iML1515 represents a Resource that enables a broad range of new computational

and big data analytic studies that can systematically generate fundamental knowledge about E.

coli as a species.

3.1 The E. coli metabolic model at the cutting edge of systems

biology

Genome-scale network reconstructions of metabolism form a common denominator for

bottom-up systems biology studies [1, 2]. A network reconstruction represents a biochemically,

genetically, and genomically (BiGG) structured knowledge-base that contains detailed informa-

tion about the target organism [3]. Reconstructions must be of high-coverage and of high quality

[4–7] to obtain the highest accuracy of data interpretation and physiological predictions. Further,

the more disparate data types that are represented in a reconstruction, the more explanatory and

predictive capability it has [3, 8]. The knowledge-base that a reconstruction represents provides a

way to meet the so-called big-data-to-knowledge grand challenge that now faces the life sciences

[9, 10] (Figure 3.1A).

Even though E. coli K-12 MG1655 is perhaps the best characterized organism in molecular

and genetic terms, new functions and capabilities that it possesses continue to be discovered [11–

13]. As the quote above suggests, E. coli is a widely-used model organism and a reference for

biological research, and that is certainly true for its role in the development of the bottom-up

approach to systems biology. Newly discovered biochemical functions and metabolic capabilities
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demand that the E. coli metabolic reconstruction be updated to account for them.

We present an updated and expanded version of the E. coli metabolic network reconstruc-

tion. This new version, named iML1515 , includes: 1) newly characterized genes and reactions,

the majority of which have been discovered since 2011; 2) new structural information about the

proteins in the reconstruction including a link to domains within the structure; 3) metabolism of

reactive oxygen species (ROS); 4) metabolite repair pathways; 5) evaluation of growth mainte-

nance coefficients; 6) validation against new extensive data sets presented here; 7) customization

for use under commonly used growth conditions; and 8) detailed comparison to the metabolic

gene portfolio of 1122 sequenced E. coli strains.

Previously, protein structures have been integrated into a genome-scale metabolic model

of E. coli to compute growth rate as a function of temperature [14]. Here, we have followed a

curated, standardized procedure [15] to expand the number of high-quality enzyme structures

represented in iML1515 . Structural systems biology is a field of growing importance that needs

new tools and resources. iML1515 can be used as a tool to explore the 3-dimensional structural

diversity of the proteome across different strains of E. coli by using just its genome sequence.

On a structural (molecular) level, iML1515 provides insight into molecular properties through

atomistic representations of proteins and their ligands, whereas, on a systems level, it constitutes a

powerful tool for the characterization of complex biological systems. The representation of protein

structures also allows for the development of a finer grained view of the structural proteome and

the creation of a new domain-Gene-Protein-Reaction (dGPR) relationship. This addition allows

for detailed strain-to-strain comparative analysis using iML1515 as a tool to study E. coli as

species at multiple biological scales.

iML1515 is a Computational Resource that allows a range of new questions to be ad-
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dressed computationally, including in-depth strain comparisons, structural biology analyses, sys-

tematic studies of enzyme promiscuity, high-resolution interpretation of Tn-seq data, large-scale

evaluation of sequence diversity and evolution across a species in mechanistic detail. iML1515 ,

like its predecessors [16], will likely enable and aid numerous scientific and engineering studies by

expanding the range of model coverage to include phylogenetics, structural biology, physiological

properties, and new metabolic capabilities.

3.2 Results

We describe this Computational Resource in three steps: first, the description of the

iML1515 reconstruction and its content, second, its validation, and third, address a range of new

questions that were not addressable with previous metabolic reconstructions of E. coli .

3.2.1 Reconstruction

Rebuilding an expanded E. coli metabolic reconstruction with new information

All content of previous E. coli metabolic reconstructions [17–19] was re-evaluated by

assigning new quality metrics based on evidence for a particular functional assignment, ranging

from enzymatic assays (highest confidence) to genetic perturbations to computational inferences

(lowest evidence) (Figure 3.1A, Supplementary Data File 1). This process led to 54 changes

in this reconstruction compared to its most recent predecessor (see supplementary material for

detailed discussion these model changes). Additionally, new gene functions discovered via model

driven gap-filling studies[20] were also added to the reconstruction [21–23]along with other newly

discovered metabolic functions in E. coli including those for sulphoglycolysis [11], phosphonate

metabolism, [12] and the degradation of curcumin [13] (the active ingredient in tumeric). A
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particular emphasis was placed on reconstructing metabolite damage and repair pathways in

E. coli , whose importance in all organisms is increasingly appreciated [24]. Also, reactive

oxygen species (ROS) generating reactions based on a recent study [25] were updated and re-

curated, leading to the addition of 64 new ROS generating reactions (Supplementary Data File

2). A version of iML1515 with reactions coupled to ROS generation, called iML1515 -ROS is

presented in Supplementary Data File 4 and available in the BiGG database [26]. Furthermore,

we reconstructed known connections between a gene to its known transcriptional regulators [27–

30] in the form a promoter barcode for each gene (Figure 3.1B, Supplementary Data File 1). This

barcode indicates whether a metabolic gene is known to be regulated by a given transcription

factor and the type of regulation (activator, repressor, or unknown).
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Figure 3.1: The properties and content of the iML1515 knowledge base. A) The iML1515
genome-scale reconstruction covers 1515 open reading frames encoding enzymes that catalyze
2719 reactions involving 1183 unique metabolites. It also includes 1515 protein structures. All
reconstruction content is linked to external databases, including KEGG, PDB, and CHEBI.
iML1515 is capable of performing flux-balance analysis to integrate and interpret a variety of
emerging data types including linking mutations identified from re-sequencing and/or transcrip-
tomics data to fluxomics [31] . B) All reactions are directly linked to their catalyzing protein
and encoding gene(s). For the first time, a network reconstruction update is released with con-
nections to PDB structures and homology models, thus forming a domain-gene-protein-reaction
relationship, or dGPR. C) A clustering of domain architecture and metabolite usage provides
new tools to explore promiscuity and underground metabolism [21, 32]. The domain connec-
tivity can be explored across the entire reconstruction to identify shared domains responsible
for catalyzing reactions. The domain-connectivity network can be laid out using Cytoscape [33]
and is available as a network file (Supplementary Data File 6) for interactive investigation. The
acetyltransferase domain within panel C highlights a specific example of domain connectivity.
The acyltransferase domain (d1iuqa ) is present in three genes (b3018, b1054, and b2378). The
encoded proteins catalyze different but related reactions in glycerophospholipid metabolism and
endotoxin synthesis. All reactions are ACP dependent acyltransferases. D) A database con-
sisting of 334 normalized transcriptomics datasets [34] was contextualized using the GPRs of
iML1515 . Relative expression for all three genes catalyzing the Aspartate Kinase (ASPK) reac-
tion are plotted across all experimental conditions, thus displaying condition-specific preferences
for a genes usage. Listed are experimental conditions that favor particular isozymes use. At the
top of the panel we depict the two reactions (ASPK, HSDy) and the two isozymes can catalyze
these two reactions (thrA, metL). The third isozyme (lysC) can only catalyze APSK. ASPK and
HSDy activity must be present to synthesize L-threonine, L-methionine, L-isoleucine, biotin, and
S-adenosyl-L-methionine. Only ASPK activity must be present to synthesize murein derivatives
and L-lysine (further discussion can be found in supplementary text).
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Taken together, 184 new genes and 196 new reactions were added to the previous re-

construction [19] to form iML1515 , and confidence scores were re-evaluated for all other genes

(see Supplementary Text). In addition to new genes, reactions, and metabolites, the growth

and non-growth associated ATP maintenance values were recalculated using measurements from

strains of E. coli evolved to grow on different substrates and conditions (Supplementary Figures

2). The model content is presented in Supplementary Table 1 and Supplementary Figures 1 and

2.

Bridging systems and structural molecular biology

The scope of iML1515 was extended to a new orthogonal data type by linking all

metabolic gene products to their three-dimensional (3D) structural representations in the Pro-

tein Data Bank (PDB) (Supplementary Data File 3). A total of 716 of the 1515 proteins had

crystallized structures available; the remaining 799 proteins required homology modeling [35]. Of

the 184 new genes added to the model, 97% had available crystal structures. Using these 1515

protein structures, we identified the catalytic domains within them to form a complete, spatially

resolved connection from encoding gene to protein product to catalyzing domain to enzymatic

transformation (Figure 3.1C). This additional data type allows the use of iML1515 for a new

range of structural systems biology studies (see below).

Connecting each enzyme to its 3D structure allows for a fine-grained characterization of

the classical gene-protein-reaction (GPR) relationship [17]. The GPR provides an explicit and

formal connection between the genotype and the phenotype in a genome-scale reconstruction; it

links the gene coding (G) to the protein (P) that catalyzes a reaction (R) in the network. With

the inclusion of 3D structures of proteins, we obtain a detailed insight into the catalytic process
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by identifying the specific domains involved in enzymatic transformations. This new data-type

allows us to characterize genes by comparing and contrasting how structural motifs are linked to

their phenotypic properties and enables a new relationship to be formed, termed the dGPR, or

domain-gene-protein-reaction (Figure 3.1C).

The connection of 3D crystal structures to proteins in the network enables accounting

of all conserved domains in proteins of the network and an analysis of how many genes share

characteristic domains. We identified 1,888 unique domains within the structural proteome of

iML1515 . On the domain level, the maximum number of occurrences of any given domain

was 17, but most often a given domain was found in 1 or 2 PDB structures. On the protein

level, the maximum number of domains in a given PDB structure was 4 (e.g., b2444 (PDB:

2IPO), Aspartate carbamoyltransferase), but most often a given structure contained 1-4 domains

(Supplementary Data File 3). We used this data to examine the domain-connectivity of the

network, with a focus on the types of domains that were linked to each other (Figure 3.1D).

This expansion in the scope of the reconstruction will allow the mapping of sequence variation to

structure and provide additional information about many organism properties, such as enzyme

promiscuity and underground metabolism, [32] and will enable a deeper understanding of the

relationship between the structural proteome and the reactome.

Thus, iML1515 represents more than an updated and re-curated metabolic reconstruc-

tion. It contains new dimensions in reconstruction coverage, content, and capabilities. iML1515

can be converted into a genome-scale model (GEM)[36], and the knowledge-base it represents can

be computationally characterized, such as through the use of constraint-based [37, 38] protein

structure,[39] and genetic variation [40, 41] methods.
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3.2.2 Validation: Computing the outcomes of high-throughput growth

screens

Genome-scale models can be used to computationally predict the effect of genetic per-

turbations on a genome-scale [42]. They have proven to be particularly useful for predicting

the condition-dependent growth effect of gene knockouts39. Furthermore, the inconsistencies

between prediction and experimentation can lead to discovery [20, 21, 42].

To validate iML1515 we performed experimental genome-wide gene-knockout screens for

the entire KEIO collection [43, 44] grown on 16 different carbon sources that spanned different

substrate entry points into central carbon metabolism (e.g., via glycolysis, TCA cycle intermedi-

ates, etc.). The screens were conducted in triplicate using scanning and image processing tech-

niques that allow measurements beyond binary growth calls [45] (Figure 3.2A). This approach

facilitated the collection of growth profiles and subsequent evaluation of lag-time, maximum

growth rate, and yield for 3,892 gene knockouts across 16 conditions (total 61,904 data points,

Supplementary Data File 7) (Figure 3.2C). This dataset was used to evaluate gene essentiality

of the 1515 ORFs in the reconstruction. Of the 345 identified essential genes in at least one

of the 16 conditions, 188 were universal to all conditions, while 157 were specific to different

sets of nutrient sources. iML1515 could predict gene essentiality across these 16 conditions with

accuracy of 93.4%. The previous version of this reconstruction had an accuracy of 89.9%, thus

this represents an increase in predictive accuracy of 3.5% compared to GEMs based on previous

versions of E. coli s metabolic reconstruction [18, 19].
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Figure 3.2: Model validation with high-throughput growth screens. A) The colonyLive plat-
form [45] was used to perform experimental growth screens in triplicate to measure growth
capabilities of 3,869 single-knockout mutant E. coli strains on minimal medias with 16 different
carbon sources forming a total of 62,272 measured phenotypes. ColonyLive provides specific val-
ues for lag-time (LTG), maximum growth rate (MGR), and saturation point (GSP) for each gene
knock-out and condition. B) Subset of knockout data highlighting growth rates for gene knock-
outs in the TCA cycle. C) The 1,515 genes with metabolic functions accounted for in iML1515
can be directly compared to model predictions. The model is 93.5% accurate in predicting the
effect of gene knockouts, an increase in accuracy of 3.6% over the previous version of the E. coli
GEMs accuracy of 89.9% [46].
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3.2.3 New questions addressable with iML1515

Using gene expression data to analyze isozyme usage and underground metabolism

The iML1515 reconstruction was utilized to contextualize a database of normalized tran-

scriptomics data from 334 unique experiments [34] to address specific questions. The database

contains transcriptomic data from growth in different phases of growth, on various nutrient

sources, under experimental perturbations (i.e., nutrient shifts, pH shock, etc.), and with vary-

ing oxygenation conditions. Thus, the iML1515 resource can be used to analyze large datasets

allowing for both broad and specific questions to be addressed through computational analyses.

Are highly promiscuous enzymes more differentially expressed than specialist en-

zymes? We used iML1515 to identify promiscuous enzymes (based on degrees of promiscuity

or genes in the reconstruction that act on more than one substrate) to answer this question.

Gene expression variability across the dataset showed that there is no major difference in the

condition-specific differential expression for a given gene based solely on degree of promiscuity

(Supplementary Figure 3.4). To address this topic further, all measured, normalized values from

the gene expression database were mapped to dGPRs and overlaid to visualize each genes level

of transcriptional variation across all conditions in the data set (Figure 3.1D, Supplementary

Data File 8). Using the reconstruction to identify reactions catalyzed by isozymes, it was found

that 383 genes in iML1515 had expression patterns that were dependent on growth phase, car-

bon source, medium, or the experimental perturbation. Aspartate kinase (APSK), for instance,

has three isozymes in iML1515 (lysC, metL, and thrA) that can each be dominantly expressed

depending on the culture conditions (Figure 3.1D). LysC is preferred under nutrient rich me-

dia conditions or during the stationary growth phase, metL gene is dominantly expressed in
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culture conditions where glucose is not the primary carbon source, and thrA is preferentially

expressed in anaerobic and aerobic glucose M9 minimal media conditions (see Supplement for

further discussion).

Can proteomics data be used to further improve model predictions? Network recon-

structions represent the totality of an organism’s metabolic capabilities; therefore, as genome-

scale network reconstructions grow in scope and scale, the number of false positive predictions

may increase due to a mismatch between the regulation of gene expression and computation,

which assumes that all reactions can be used under any condition. To address such false positive

predictions, condition-specific models can be formed using transcriptomics or proteomics data to

remove reactions catalyzed by gene products that are not active in a particular condition. We

used this approach with proteomics data for E. coli K-12 MG1655 grown on 8 carbon sources

[47]. The data was used to remove reactions and alter GPRs associated with non-expressed genes

under the given condition (Supplementary Data File 9). Models tailored using this approach have

on average a 13.0% decrease in false positive predictions and a 2.1% increase in essentiality pre-

dictions (MCC score). Thus, condition-specific models are suitable for designing and interpreting

experiments in conditions of aerobic growth on minimal media using the corresponding carbon

source for relatively short experimental observation windows. These cases include those in which

secondary isozymes will not be upregulated to physiologically active levels.

Defining a core metabolic network: conservation of metabolic capabilities amongst

E. coli strains

iML1515 is specific for the E. coli strain K-12 MG1655. This was the first E. coli strain

whose genome was sequenced [48]. Since then, many more genome sequences of E. coli strains
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have become available. Most sequenced E. coli strains have 15-20% larger genomes than the

MG1655 strain [49, 50].

We compared the metabolic genes in iML1515 across 1122 sequenced strains of E. coli and

Shigella (Figure 3.3, Supplementary Data File 5). We found that 978 metabolic genes were shared

among >99% of the strains. iML1515 was stripped of those genes not present in greater than

1111 strains (99% of strains) to form a model representing conserved or core E. coli metabolic

capabilities, named iML978. This reconstruction contained 978 genes, 1,864 reactions, and 1,169

unique metabolites, making it similar in size to a previous conserved metabolic reconstruction

formed from 55 strains of E. coli [51].
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Figure 3.3: Overview of the iML1515 reconstruction and its comparison to sequence variations
across 1122 strains of E. coli . A) The count of each E. coli K-12 MG1655 genes presence across
1,122 sequenced strains of E. coli . B) The histidine pathways showed high levels of amino
acid differences among genes involved. Histidinol dehydrogenase was found to have many unique
sequences across the 1104 orthologs examined. The pie chart represents the percentage of strains
that contain unique hisD alleles. E. coli K-12 MG1655 possesses the hisD-116 allele which is only
present in 19 (1.7%) of the sequenced strains. C) Unique genetic mutations can be examined
using structural biology methods. For example, all of the unique alleles can be compared to the
E. coli K-12 MG1655 gene sequence to hypothesize the effect of mutations. D) Even the 978
genes with metabolic functions that are conserved across 99% of E. coli strain possess unique
genetic mutations. The bar chart displays the average number of amino acid mutations across
these highly-conserved genes for all 1,122 strains of E. coli . E) The histogram shows how many
genes have a given number of average mutations. F) Amino acid mutations can be compared on a
pathway-basis using structural biology techniques. G) Amino acid changes can also be compared
on a protein domain basis. For example, genes that encode the aldehyde dehydrogenase (ALDH-
like) domain present in hisD have, on average, more genetic mutations across all 1,122 strains of
E. coli than genes encoding other domains.
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Analysis of iML978 using constraint-based modelling revealed phenotypic differences from

the full iML1515 E. coli K-12 MG1655 model. For example, iML978 is auxotrophic for nutrients

including L-phenylalanine, L-tryptophan, L-arginine, L-tyrosine, L-glutamine, biotin, thiamine,

and tetrahydrofolate, indicating that the ability to synthesize these molecules is not conserved

across all strains of E. coli or alternate routes for their synthesis exist. When the in silico minimal

media is supplemented with these nutrients, iML978 is able to compute growth on 115/187 C

sources, 75/94 N sources, 6/11 S sources, and 41/50 P sources (compared to the full iML1515

model, Supplementary Table 2). iML978 is provided with this manuscript for use in applications

studying conserved E. coli metabolic functions and as a starting point for developing a metabolic

reconstruction from a freshly sequenced E. coli strain (Supplementary Data File 4).

Using the core metabolic network to analyze E. coli clinical isolates

Can we build informative metabolic models solely based on genomic sequence from

clinical isolates? To address this question, we analyzed 552 sequenced clinical isolates from

two recent studies of pathogenic E. coli [52, 53]. Strain-specific genome-scale models (GEMs)

of the clinical isolates were constructed using iML1515 (Figure 3.4A) by mapping metabolic

capabilities of each respective clinical isolate (by using the sequence from K-12 MG1655 to search

for orthologs in each respective strain). The average strain-specific GEM was based on 1404 30

genes (Figure 3.4C). We used the core model, iML978 to evaluate the assembly quality of each

genome (any strains missing a core gene were excluded from the following analyses).

We predicted growth capabilities on all growth supporting carbon, nitrogen, phospho-

rous, and sulfur sources for each of the 552 clinical isolate models (Figure 3.4C). The predicted

growth capabilities were sufficient to distinguish strains of extra-intestinal E. coli (ExPEC) from
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those of intestinal strains (InPEC). We also compared the conservation of the 176 new metabolic

reactions in iML1515 across the 552 clinical isolates (Figure 3.4B). The new reactions that were

not conserved across all strains included the curcumin catabolism pathway (NADPH-dependent

curcumin reductase, present in 232/552 GEMs) as well as the pathway for degradation of sulpho-

quinovose (6-deoxy-6-sulfofructose-1-phosphate aldolase, present in 501/552 GEMs), showing

that not all clinical isolates of E. coli may be capable of utilizing these nutrients. Thus, the

iML1515 resource enables identification of important metabolic differences in clinical isolates. If

such differences are found to link to different treatments and clinical outcomes, future diagnosis

may be possible from sequence alone.

62



Figure 3.4: Using iML1515 to investigate freshly-sequencing clinical isolates and metagenomic
samples. A) Workflow for construction of strain-specific models from sequenced clinical isolates
and complex metagenomics samples. The iML1515 resource can be used to rapidly construct
strain-specific models of metabolism from sequenced clinical isolates and complex metagenomics
samples. Genes that are part of the iML1515 model are identified and extracted for comparison
across each of the metagenomics samples. B) Model-predicted metabolite synthesis capabilities
from metagenomics samples. Sample-specific models of E. coli metabolism were constructed for
22 metagenomic samples by evaluating shared content from iML1515 . Metabolite synthesis
capabilities and yields were calculated for each model and evaluated using PCA to illustrate a
separation in sample-specific metabolite synthesis capabilities. Points are colored based on model-
predicted max autoinducer-2 yield. C). Heatmap of model-predicted catabolic capabilities for
clinical isolates. Strain-specific models were constructed for 552 E. coli clinical isolates from two
recent studies [52, 53]. Models were used to predict the ability to grow on over 300 different
carbon, nitrogen, phosphorous, and sulfur sources. D) Machine learning techniques, such as
a decision tree, can be applied to model predictions. For example, model-predicted catabolic
capabilities can be used to classify clinical isolates between extra-intestinal pathotypes (ExPEC:
isolated from blood or urine) and from intestinal pathotypes (isolated from feces) based solely on
the model-predicted ability to catabolize three substrates (galactitol, butyrate, and raffinose).
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Building models of E. coli strains in metagenome samples

With continued decreases in DNA sequencing costs, is strain-level resolution and mod-

elling from metagenomics samples feasible?[54] The metagenomics field anticipates that in 2017

full Illumina read coverage of the DNA found in stool samples will be standard. To answer the

above question, we deployed iML1515 to analyze metagenomics sequencing data and evaluate

whether strain-level resolution is achievable. Using the same procedure as above, we can build

draft GEMs for E. coli strains using metagenomic data [55]. We built such draft models for 22

microbiome samples from two recently published studies [55, 56]. On average, sequencing data

from each sample allowed the identification of 131194 metabolic genes contained in iML1515 .

The gut microbiome plays a significant role in breaking down and synthesizing compounds

important for human health. Sample-specific metabolic models from metagenomic sequences can

be used to study this process by determining the dominant metabolic capabilities of species

closely related E. coli K-12 MG1655 contained within the sample, and therefore the patients

microbiome.

To examine how metabolic capabilities translate to possible metabolite secretion in the

human gut, we used the sample-specific models to predict levels of maximum metabolite synthesis

(see Methods). PCA analysis of the results shows that models cluster into discrete groups based

on metabolites that can be synthesized (Figure 3.4B). For example, the models separate in

principal component 1 based, in part, on the maximum capability to produce autoinducer-2

which could have implications on quorum sensing for strains present in each sample.

These GEMs enable an analysis of metabolic capabilities of the E. coli strains present in

these metagenomic samples. A total of 350 metabolic genes from iML1515 were variably present

across the 22 samples. Interestingly, of the 184 new genes that were added to iML1515 over
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its predecessor [19], 3417 of them were variably present across the 22 samples, showing that the

new content in iML1515 provides valuable new information for analysis of metagenomic samples.

We found that the core metabolic capabilities consisted of 2,326 reactions while 356 reactions

were variable across the samples (Synopsis Figure 3.1A). Reactions variably present among the

strains-specific models, included those involved in catabolism of sulphoquinovose and curcumin.

Both of these metabolites are components of the human diet. Thus, commensal E. coli strains

may play a different metabolic role in different microbiomes.

Protein structure-guided discovery of mutations across different E. coli strains

Does the introduction of protein structural information to metabolic reconstructions

allow the evaluation of how strains differ in their metabolic function? iML1515 not

only allows for analysis of conserved metabolic capabilities but also for comparison of sequence

variation among conserved metabolic genes. The presence of specific alleles in the E. coli K-12

MG1655 genome was evaluated across the 1122 different strains. All genes in iML1515 were

compared to their corresponding gene in each of the 1122 E. coli strains. The number of specific

and unique alleles ranged from 20 (e.g. pfkA) to 249 (e.g. hisD, see Figure 3.4). Overall we found

that MG1655 possessed the dominant allele (the allele present in a majority of strains) for only

30% of the 1122 strains (Supplementary Data File 5). For example, the K-12 MG1655 allele of rph

was found to be present in less than 1% of strains (7 close K-12 derivatives including K-12 W3110

and BW25113). This mutation has been shown to result in reduced expression of pyrE and leads

to pyrimidine starvation conditions where strains grow 10-15% slower in pyrimidine free media

than in media supplemented with uracil [57]. Thus, iML1515 can be used to develop fundamental

understanding of the differences between laboratory and true wild-type strains through in-depth
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comparison of their genetic composition.

Figure 3.5: Analysis of the structural proteome across the E. coli species. A) We aligned all
protein sequences from more than 50 different strains of E. coli (including MG1655, commensal,
extra-intestinal and intra-intestinal pathogenic and Shigella strains). These alignments allowed
for the identification of amino acid differences between the K-12 laboratory strain and the 50
strains studied here. We identified specific amino acid positions across all genes that were sig-
nificantly different (more than 20 strains marked an amino acid difference with respect to the
K-12 strain at a given position in a gene). B) For the set of genes that shared a high degree
of dissimilarity from K-12, we further investigated how many of these amino acid changes (or
mutations) cluster within a 10 vicinity of all other mutations. We found that the amino acid
mutations that tend to cluster are commonly found on protein surfaces, while a select subset
occur in buried regions (greater than 4-6 from the surface of the protein). C) The amino acid
differences that clustered at the surface of proteins are in protein-protein interface regions. An
illustrative example is that of homo and/or heterodimer complexes of genes involved in molyb-
denum cofactor biosynthesis. We find the co-evolution of mutations occurring at prime positions
in the protein structure may influence the biological assembly of these subunits. D) A global
analysis of all amino acid differences indicates that, in general, the landscape of the structural
proteome variation across E. coli strains clusters based on distinct properties of the proteins
themselves that are linked to strain differences. A 3D Principal Component Analysis (PCA)
analysis shows three main axes, representing negative charge, positive charge, and hydrophobic
properties of all proteins in each strain of E. coli .
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Can analyzing the 3-dimensional structural diversity of the proteome across different

strains of E. coli hint at their lifestyle? We compared the conservation of E. coli K-12

MG1655 amino acid sequence for genes shared among 55 strains of E. coli spanning a range

of pathotypes [51] and identified the regions of the proteome that were significantly different

(Figure 3.5A). Representing sequence variants in the context of their network-level and structural-

level properties provides a unique extension of genome-scale reconstructions [56]. For 30% of the

genes, we found that sequences were conserved in more than 20 of the 55 strains analyzed (e.g.,

980 genetic alterations across 414 genes), indicating that the laboratory strain had either mutated

spontaneously or evolved specific functionalities that were not necessarily needed by the other

strains. We further investigated whether variants were co-located in the same 10 vicinity of other

variants (Figure 3.5B) and found that the majority of cases occur on the surfaces of proteins. For

these cases, we probed known protein-protein interactions and found that certain variants likely

influence biological assembly, such as in the case of moeA and mobB genes where co-evolution of

mutations occurs at prime positions in the protein structure and may influence their biological

assembly (Figure 3.5C).

Finally, a global analysis of the proteome landscape for all 55 E. coli strains indicates

that variation clusters by (i) physico-chemical properties and (ii) strain type. Commensal strains

retain similar global proteome properties to that of K-12 MG1655 when compared to other strains

(Figure 3.5D). This observation is interesting and potentially impactful, given that Shigella is

known to withstand radical changes in environmental conditions (e.g., heat and pH shock).
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3.3 Discussion

The iML1515 knowledge base includes an unprecedented range of organism-specific infor-

mation that has been organized and systematized, thus opening it to integrated computational

assessment. Such assessment allows for extraction of knowledge through integrated and struc-

tured analysis of disparate data sets. Examples include the assessment of gene essentiality and

physiological properties as well as novel computations of structure-derived protein properties and

multi-strain sequence comparisons.

All of the metabolic genes in iML1515 are linked to 3D representations of protein struc-

ture. This link expands the utility of the model to structural biologists and those interested in

studying the effect of protein properties on the functions of an entire network. Furthermore,

linking domains to their encoding genes (through the dGPR relationship) should help in effec-

tively analyzing transposon-mutagenesis data where a given transposon integration may abolish

a portion of a gene while leaving a domain-coding portion intact and potentially active.

iML1515 allows for database interoperability, as all reconstruction content is linked to ex-

ternal databases, including KEGG, PDB, and CHEBI. iML1515 can be converted into a genome-

scale model, and thus the knowledge base it represents can be computationally interrogated and

characterized. A mathematical format enables the use of multiple different computational tools.

Constraint-based methods can be used (i.e., the COBRA Toolbox [58, 59]) to assess network

properties. Protein structure tools can be deployed [39] to assess similarities and properties of

protein structure and genetic variation can be examined using phylogenetic tools [60] to study

gene evolution and transfer between organisms as well as its effect on species evolution.

In addition, we present three versions of iML1515 tailored for specific use cases. These

three versions can be used to augment iML1515 s capabilities and simulate metabolic functions
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under unique situations. 1) A version containing reactions known to produce reactive oxygen

species coupled to ROS production (iML1515 -ROS) allows for the simulation of ROS production

and genetic manipulations that might increase such production for use in antibiotic design or

potentiating activity25. 2) A version containing only conserved E. coli metabolism (iML978) can

be used to probe the core metabolic capabilities of E. coli as a species, which also serves as a

starting point for building metabolic network reconstructions of newly sequenced E. coli strains.

3) A version where genes that are unlikely to be expressed in the common growth conditions

of M9-glucose minimal media has been removed and the growth objective has been modified

(iML1400-glucose).

Thus, iML1515 provides a Computational Resource for studying the metabolic state of

E. coli strains accounting for protein structural features and genetic variation. For the past

decade, E. coli metabolic reconstructions have been used in a wide range of studies16, from

the discovery and characterization of new metabolic genes [21], to the design of new antibiotics

[25, 61], to the construction of high-yield production strains for industrially valuable compounds

[62–64]. The unique capabilities of iML1515 will enable new categories of scientific pursuits and

practical applications.

3.4 Methods

3.4.1 Network reconstruction procedure

The iML1515 reconstruction was assembled by updating the iJO1366 E. coli metabolic

reconstruction [65]. A 96-step procedure [66] for metabolic network reconstruction was followed

when adding new genes, reactions, and metabolites to form iML1515 . The reconstruction was
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assembled using the SimPheny (Genomatica Inc., San Diego, CA) software platform. All new

metabolites were checked against public databases (e.g. KEGG, PubChem) for correct structure

and charge at a pH of 7.2. New reactions were mass and charge balanced and reversibility was

assigned based on experimental studies, thermodynamic information, or the heuristic rules in the

standard reconstruction protocol [66]. Reactions were associated with genes and functional pro-

teins to form GPRs. The iML1515 model was exported from SimPheny as an SBML file, and the

COBRApy Toolbox [59] was used for additional model testing. The Gurobi linear programming

solver (Gurobi Optimization, Inc., Houston, TX, USA) was used for all optimization procedures.

3.4.2 Updating the Biomass Objective Function GAM and NGAM

Growth-associated and non-growth-associated maintenances values were recalculated

based on recent E. coli K-12 MG1655 adaptive laboratory evolution studies (ALE). For these

calculations, the electron transport system NADH dehydrogenase reactions NADH16pp (nuo)

and NADH5 (ndh) were constrained to carry identical fluxes by replacing these reactions with an

equivalent flux split reaction. Additionally, TRN constraints were applied to turn off reactions

not active under the specific experimental condition [67]. The model was adjusted to remove

all GAM and NGAM. Next, it was constrained using end-point measured physiological data

from the ALE studies (including growth rate, substrate uptake rate and byproduct secretion

rates). Under these constraints, the model was used to predict maximum possible ATP gener-

ation by optimizing the ATPM reaction. This data was plotted (Supplementary Figure 7) and

the slope and intercept of the experimental data were identified using linear regression. NGAM

(the y-intercept) was determined to be 6.86 ATP mmol
gDW and the GAM (slope) was 75.55 mmol

gDW·hr
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Statistics

The growth associated (GAM) and non-growth associated maintenance (NGAM) was

calculated using wild type and evolved E. coli K-12 MG1655 strains. The substrate uptake,

secretion and growth rates were presented using data from 3 technical replicates in each of the

studies. The mean values for the measured substrate uptake and secretion rates are shown in

Supplementary Figure 6 with the error bars depicting the standard deviation in the measured

values as provided by the studies. To include a consideration of this error when calculating GAM

and NGAM values, we included error bars in Supplementary Figure 7 to show the maximum

range that iML1515 computed ATP synthesis values could possibly vary for each E. coli culture.

For each physiological measurement, the horizontal error bars represent the standard deviation

in experimental growth rate measurements, as provided by the ALE studies. Vertical error bars

represent the maximum and minimum ATP hydrolysis flux capable of being produced by iML1515

for each experiment. This was done by determining the combination of measurements plus-or-

minus their error that would result in the lowest and highest capacity for the model to produce

ATP. For instance, for an aerobic glucose simulation, the highest ATP flux would be obtained

by constraining the growth rate = measured - error, the acetate flux = measured - error, and

glucose uptake rate = measured + error. In other words, the model has the highest capacity for

ATP production when growing slowly while taking excess glucose and secreting minimal acetate.

The lowest ATP flux would be calculated by setting these constraints to the opposite values

and using the opposite logic. Each individual physiological measurement used to perform this

analysis has an acceptably low amount of error (Supplementary Figure 6). This low amount of

error, however, becomes compounded when running the simulations in the way described above.

Further, it is possible, since the error bars represent the extremes of possible ATP production
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capability for each measurement, that some of the physiological states considered are actually

even infeasible in vivo.

3.4.3 Protein structure integration

Integration of protein-related information into the GEM involves four stages: (i) linking

the genes to available experimental protein structures, found in publicly available databases,

such as the Protein Data Bank (PDB); (ii) determining genes with and without available protein

structures and performing homology modeling using the I-TASSER suite of programs when

structures are not available [35]; (iii) performing QC/QA on all structures based on a set selection

criteria (e.g., resolution, number of mutations, completeness); (iv) mapping GEM genes to other

databases (e.g., BRENDA [68, 69], SwissProt [70], Pfam [71], SCOP [72]) for complementary

protein-structural information. For the majority of gene to protein structure mapping, we used a

previously generated GEM-PRO for iJO1366. For details about generation of GEM-PRO models,

we directed the reader to Brunk et al [15]. Use of PfamScan and HMMER3 algorithms generated

protein fold family annotations [73]. Open source software for protein structural predictions are

available and are used in conjunction with the IPython framework.

3.4.4 In vitro phenotypic screens

Stock plates comprising all the KEIO SKO mutants in 384-well-format (24 columns and

16 rows) were thawed at room temperature for about 1 h before use. The liquid cells on the

thawed plates were spotted onto fresh Luria-Bertani (LB) agar plates with 384-long pins. For

the wild-type experiment, E. coli K-12 BW25113 was inoculated into 2 ml LB and grown for

20 h at 37°C with shaking. The liquid culture was spotted onto fresh LB agar plates with 384-
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long pins. After overnight incubation at 37°C, the grown colonies were arrayed from 384-format

to 1536-format plates (48 columns and 32 rows) with 384-short pins. These inoculations were

performed using a Singer RoToR HDA machine with designated pins (Singer Instruments). After

inoculation, colony growth at 37°C was monitored using the Colony-live system [45]. The Colony-

live system produced three growth characteristic values Lag-Time Growth (LTG), Maximum

Growth Rate (MGR) and Saturation Point of Growth (SPG). All experiments were done using a

validated Keio collection for all SKO mutants [44, 74] and the wild-type E. coli K-12 BW25113

carrying kanamycin-resistant pXX563 (mini-F plasmid, single copy number; unpublished). All

SKO mutants were stored in a total of twelve 384-well microtiter plates at -80 °C. Cells were

grown in LB medium with 30 µ g/ml of kanamycin (Wako, Osaka, Japan). Agar plates were

prepared by adding 1.5% agar (Mitsui Sugar, Tokyo, Japan) to M9 medium and autoclaving, and

50 ml of the medium was then poured onto a Singer PlusPlate (Singer Instruments, Somerset,

United Kingdom). Before use, the agar plate was dried in a laminar flow cabinet for 10-30 min.

Statistics

Growth analysis of the Colony-live system was performed with R (http://www.r-

project.org) and rpy2 package. After the image analysis, colony growth values less than 1 were

set to 1, which is the lower limit quantification value. Colony growth values at all incubation

times were normalized by the minimum growth value, and then the first 25 valid growth values

exceeding 1 were regressed to the Gompertz growth model. All measurements were performed

in triplicate. See Takeuchi et. al. [45] for full details on statistical analyses.
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3.4.5 Constraint-based modeling

The iML1515 model, constructed in SimPheny, was exported as an SBML file and used

to perform simulations and constraint-based analyses using the COBRApy Toolbox and Gurobi

linear programming solver. The constraint-based model consists of a stoichiometric matrix (S)

with m rows and n columns, where m is the number of distinct metabolites and n is the number

of reactions. Each of the n reactions has an upper and lower bound on the flux it can carry.

Reversible reactions have an upper bound of 1000 mmol
gDW·hr and a lower bound of -1000 mmol

gDW·hr ,

while irreversible reactions have a lower bound of zero. FBA can be used to identify optimal

steady-state flux distributions of constraint-based models. Linear programming is used to find

a solution to the equation Sv = 0 that optimizes an objective cT*v, given the set of upper and

lower bound constraints. v is a vector of reaction fluxes of length n. Typically, c is a vector

of 0s of length n with a 1 at the position of the reaction flux to be maximized or minimized.

For a thorough description of FBA, see (Orth et al, 2010) [37]. For most growth simulations,

the core biomass reaction is set as the objective to be maximized. One reaction, FHL, is not

used under typical growth states and is by default constrained to carry zero flux. The NGAM

constraint is imposed by setting a lower bound of 6.86 mmol gDW-1 on the reaction ATPM. The

exchange reactions that allow for extracellular metabolites to pass in and out of the system are

defined such that a positive flux indicates flow out. All exchange reactions have a lower bound of

zero except for glucose (-10 mmol
gDW·hr ) and oxygen and all inorganic ions required by the biomass

reaction (-1000 mmol
gDW·hr ).
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3.4.6 in silico phenotypic screens

The iML1515 E. coli K-12 MG1655 metabolic reconstruction was used to make com-

putational gene essentiality predictions. The parent strain of the Keio Collection, BW25113,

is derived from K-12 MG1655 and is missing several genes that are present in K-12 MG1655:

araBAD, rhaBAD, and lacZ. Therefore, flux through the associated reactions without isozymes

(ARAI, RBK L1, RMPA, LYXI, RMI, RMK, and LACZ) was constrained by setting the upper

and lower flux bounds of the reactions to zero. The lower bounds of exchange reactions were

set to default values to simulate minimal media. For aerobic growth, oxygen uptake was allowed

by setting the lower bound of the oxygen exchange reaction to -20 mmol
gDW·hr . Anaerobic growth

was modeled by setting the lower bound of this reaction to zero. The substrate uptake rate for

all primary carbon sources experimentally screened (see in vitro phenotypic screens in Supple-

mentary Methods) was set to a lower bound of -10 mmol
gDW·hr . After setting the bounds for each

condition, the predicted effect of the single deletion of each gene in iML1515 for each condition

was computed using the COBRApy Toolbox delete model genes function, which uses GPRs to

constrain the appropriate reactions to carry zero flux and then predicts maximum growth using

FBA. A gene was considered computationally essential for the simulated condition if deletion of

the gene reduced optimal growth rate to less than 0.05 h-1. The newly identified essential genes

were added to the lists of essential genes under each condition and the results of the essentiality

prediction comparisons for iJO1366 and iML1515 are represented in Supplementary Data 11.

3.4.7 Prediction of different carbon, nitrogen, phosphorus, and sulfur sources

The possible growth-supporting carbon, nitrogen, phosphorus, and sulfur sources of

E. coli were identified using FBA. First, all exchange reactions for extracellular metabolites
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containing the four elements were identified from the metabolite formulas. Every extracellular

compound containing carbon was considered a potential carbon source. Next, to determine pos-

sible growth supporting carbon sources, the lower bound of the glucose exchange reaction was

constrained to zero. Then the lower bound of each carbon exchange reaction was set, one at

a time, to -10 mmol
gDW·hr , and growth was maximized by FBA using the core biomass reaction.

The target substrate was considered growth supporting if the predicted growth rate was above

zero. While identifying carbon sources, the default nitrogen, phosphorus, and sulfur sources were

ammonium (nh4), inorganic phosphate (pi), and inorganic sulfate (so4). Prediction of growth

supporting sources for these other three elements was performed in the same manner as growth

on carbon, with glucose as the default carbon source.

3.4.8 Mapping to other E. coli strains

The protein sequences of all available E. coli and Shigella strains (1122 strains total)

were downloaded from the RAST database [75]. The RAST API [76] get corresponding genes

function was used to identify orthologs between E. coli K-12 MG1655 and each of the other

strains based on bi-directional best BLAST hits and genomic context. Genes were considered

conserved if they were present in another organism at greater than 80% percentage identity with

a best bidirectional hit (BBH). Those genes that were not shared at this cutoff in less than

99% of strains were then removed from the iML1515 model to form iML976. This model was

investigated to determine which components of the biomass function could not be produced.

When a strain is unable to synthesize a certain biomass component, it either has an alternate

route to produce this biomass component or an auxotrophy requiring transport of this metabolite

to sustain growth. This method can accurately determine known strain-specific auxotrophies [51].
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To simulate growth on all possible C, N, P and S sources the model was pro-

vided with exchange reactions for those components that it was auxotrophic for (btn, glu-

L, dttp, thmpp, 2ohph, trp-L, 10fthf, udcpdp, tyr-L, phe-L) with a lower bound of -1.

The biomass function was modified by removing four components that could not be ex-

changed (pe161 p, pe160 p, kdo2lipid4 e, murein5px4p p) to form a conserved biomass function:

Ec biomass iML976 CONS 75p37M. This biomass function was used to optimize for growth of

the model by individually replacing the sole source of C, P, N or S. Growth was considered to

be present if the predicted growth rate was 5% greater than the growth rate with no exogenous

source of C, N, P, or S (excluding the exchange reactions provided auxotrophies).

3.4.9 Mapping protein structures to other E. coli strains

Incorporating protein-related information into a GEM involves four stages of semi-

automated curation: (i) link the genes of the organism to available experimental protein struc-

tures, found in publicly available databases, such as the Protein Data Bank (PDB); (ii) determine

genes with and without available protein structures and perform homology modeling to create

structures based on templates when none are available; (iii) perform ranking and filtering of PDB

structures for each gene based on a set selection criteria (e.g., resolution, number of mutations,

completeness); (iv) map GEM genes to other databases (e.g., BRENDA [68, 69]), SwissProt [70],

Pfam [71], SCOP [72]) for complementary protein-structure derived data. More details on this

workflow can be found in the protocol publication [64]. The quality of the structural reconstruc-

tion is further improved through a series of QC/QA verification steps during the ranking and

filtering stage. To this end, each protein structure is assessed for gaps (non-resolved portions of

the protein), changes amino acid sequence (mutations) and missing residues. The final structure
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for every protein in iML1515 has a complete, gap-less and correct amino acid sequence. This

process was then carried out for 55 different strains of bacteria. We used the K-12 strain as a base

strain and made modifications to the K-12 protein sequence and 3D structure based to reflect

the individual differences of a given strain. Modifications to the 3D structure of the protein were

carried out as previously described67.

Once we had a complete metabolic proteome for all 55 strains, we calculated 29 phys-

ical properties of the protein to construct a multidimensional data matrix. These properties

include solvent-accessible surface area (SASA), number of total contacts, disulfide bond distance

(SS-bond), percent of the protein that is buried, percent of the protein that is on the surface,

secondary structure composition (-helical content, -strand content, 310 helix content, -helix con-

tent, hydrogen bonded turn content, bend content, disordered content), ovality (SASA/Nres2/3),

residue depth (distance of the C atom from the protein surface), percent of the total structure

that is nonpolar, polar, positively charged, or negatively charged, and percentage of the sur-

face/buried residues that are nonpolar, polar, positively charged, or negatively charged. Details

for each of these calculations are previously described (Brunk et al. 2016). To determine which

protein properties were most important to strain differences, we performed multivariate analyses,

such as Principal Component Analysis (PCA). All 3D visualization of strain variation was carried

out using VMD (Visual Molecular Dynamics).

Context-specific model construction

The context-specific models were constructed using a proteomics dataset of E. coli

BW25113 grown in 22 different culture conditions [47]. Of the 22 conditions, we built context-

specific models using the proteomics data for E. coli grown on 7 substrates that were used for
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the genome-wide essentiality screens presented here (Figure 3.2). This was done by mapping the

copy numbers of each protein to the genes in iML1515 for each of the 7 conditions. This data

was then used to determine the dominant isozyme for each reaction in iML1515 . For the model

reactions capable of being catalyzed by two or more isozymes, the expression per isozyme sub-

unit was averaged. Isozymes with average subunit expression of less than 10% of the maximum

isozyme expression (i.e., the primary isozyme) were removed from the reaction. If a particular

locus occurred was present in more than one AND or OR relationship in the GPR, the reaction

was left unchanged. The updated GPR rules for each reaction in iML1428-Glucose can be found

in Supplementary Data 12. The iML1428-Glucose models essentiality predictions were com-

pared against a glucose aerobic essentiality screen of the Keio collection (see Gene Essentiality

Predictions in Supplementary Methods). The remaining false positive and false negative model

predictions for iML1428-Glucose were tabulated and explained (Supplementary Data 12).

3.4.10 Reactive oxygen species producing reactions identification and inclu-

sion

To include all ROS sources in our model, every enzyme with the capacity to lose electrons

to O2 was incorporated from a previous study modeling ROS generation in E. coli K-12 MG1655

[25]. Additional ROS-generating enzymes were identified using the Ecocyc database [77]. These

enzymes use flavins, quinones, and/or transition metal centers during catalysis, and are listed

along with their intended, H2O2-generating and O2-generating reactions in Supplemental Data

3. In total, 164 (32 new reactions) have the capacity to generate ROS in E. coli K-12 MG1655

and were included in the model. We followed the same procedure as Brynildsen et al. [25] for

coupling ROS generation to the identified ROS generating reactions. All enzymes were allowed to
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produce both H2O2 and O2- simultaneously. Enzymes that use flavins or quinones derived both

species from O2, while enzymes that only utilize transition metal centers derived O2- from O2,

and H2O2 from O2-. This is in recognition of the fact that enzymes with only transition metal

centers (e.g., Fe-S), such as aconitase, fumarase, and dihydroxy acid dehydratase, are readily

oxidized by O2- [78], and that continuous recycling of these enzymes active sites occurs [79].

3.4.11 Genome-scale contextualization of transcriptomics data

A normalized database consisting of 2258 transcriptomic experiments was filtered by

removing all experiments performed using mutant strains or in undefined media. An additional

experiment (E70) was filtered out which had expression values inconsistent with the remaining

date sets [34]. The remaining 333 experiments that met this criteria were further manually

curated in order to achieve higher resolution in the experimental metadata, particularly more

specific characterization of primary carbon sources and salts (i.e., MOPS, M9, etc.) in culture

media, experimental perturbation, growth phase, aerobicity and strain (Supplementary Data

9). The absolute gene subunit expression was averaged for each isozyme in iML1515 and the

fractional expression for each of the isozymes within a reactions GPR was plotted across all

experimental conditions [34] (shown for Aspartate Kinase (ASPK) in Supplementary Figure 8B).
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Chapter 4

Revealing the intricate relationships

between proteome cofactor

requirements and growth

environments

Sustaining a robust metabolic network requires a balanced and fully functioning proteome.

Many enzymes require cofactors (coenzymes and engrafted prosthetic groups) to function prop-

erly. The metabolic capabilities of Escherichia coli have been comprehensively described using

extensively validated genome-scale metabolic and expression models (ME-models). ME-models

have the unique ability to compute an optimal proteome composition underlying a metabolic

phenotype, including the provision of all required cofactors. Here we use ME-models for 55

different E. coli strains to examine how environmental conditions change proteome usage. We
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found that: (1) ME-model computations reveal variability in cofactor use depending on the spe-

cific metabolic phenotype; (2) Despite the critical importance of cofactors for healthy, robust

growth, B vitamin (enzyme cofactors) auxotrophies are relatively common in wild-type E. coli

strains; (3) The ME-model could describe how such auxotrophies affect the metabolic state of

E. coli , revealing candidate evolutionary drivers of auxotrophy in terms of ROS stress mitiga-

tion, protein specialization, growth yield, and opportunism. Genome-scale models have reached

a level of sophistication where they reveal intricate properties of functional proteomes and how

they support different E. coli lifestyles.

4.1 Enzyme cofactor activity and metabolism are intrinsically

linked

A key component of synthesizing a functional proteome–along with translating the proper

amino acid sequence and folding the protein into the proper 3D structure–often includes equipping

enzymes with the necessary prosthetic groups and coenzymes. These accessory enzyme cofactors

often drive chemical conversions at the heart of the enzymes activity, making their presence

essential for detectable catalytic activity [1, 2]. The essential functions of many of some cofactors

such as flavins and iron sulfur clusters can be traced back to enzymatic functions found at

the beginning of life [3]. Therefore, ensuring that all coenzymes and prosthetic groups are

available to enzymes is essential for a robustly growing organism. Scarcity of one or more of the

essential micronutrients can have a profound impact on the metabolic state of an organism, such

as disruptions in energy metabolism and lactate secretion in iron-limited stress conditions [4].

Likewise, the presence of certain cofactors can shape the evolutionary trajectory of an organism.
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For example, E. coli does not have the metabolic capability to synthesize tetrahydrobiopterin, a

required cofactor for hydroxylase reactions. To circumvent this limitation, E. coli has evolved to

synthesize tyrosine from chorismate as opposed to simply hydroxylating phenylalanine.

The cofactors essential in microorganisms are also required in organisms across the tree of

life, either obtained through direct synthesis or through the organisms diet. Humans, for example,

require the same cofactors but do not have the catabolic capabilities to produce them thus making

cofactors an essential component of our diet as B vitamins (Table 4.1). Alternatively, E. coli K-

12 MG1655 and many other microbe, are capable of de novo synthesizing most of the cofactors

listed in Table 4.1. Many strains within the E. coli species, however, have evolved in a way

rendering them unable synthesize some of these essential cofactors, making them auxotrophic.

The ubiquity in the requirement of these cofactors for growth, along with variability in the

ability of organisms to produce these metabolites, often give cofactors an important role in

shaping community dynamics [5]. This can be seen in natural systems–such as the complex

interactions between microbial communities and the human host in the gut microbiome–or in

industrial settings [6].

It is well known how most cofactors enable the catalytic function of its associated enzymes.

Additionally, the essential catalytic activity enabled by these cofactors have been tied to a growth-

supporting function. However, a systems understanding of how cofactor use–or lack thereof–can

shape the metabolism of an organism on a genome scale is missing.

Computing metabolic states and proteome composition

One established method for studying the metabolic capabilities of an organism is a

genome-scale metabolic model (M-model). M-models have shown significant success predicting

90



Table 4.1: Summary of the relevant cofactors in E. coli K-12 MG1655
Cofactor Name
(Bigg ID)

General Function Cellular Role Essentiality
from Xavier et
al.

Vitamin

Thiamin (thm) Energy metabolism Prosthetic
group

Universal B1

Riboflavin (ribflv) Redox metabolism Prosthetic
group/redox
coenzyme

Universal
(FMN, FAD)

B2

Niacin (nac) NAD(P) precursor, electron carrier Coenzyme Universal
(NAD, NADP)

B3

Pantothenoic Acid
(pnto R)

CoA precursor, fatty acid biosynthesis Coenzyme Universal
(CoA)

B5

Pyridoxine (py-
dxn)

Versatile coenzyme that participates in
transamination, decarboxylation, etc.

Prosthetic
group

Universal B6

Biotin (btn) Required for carboxylase activity Prosthetic
group

Conditional B7

Folate (thf) Carrier of single carbon moieties Coenzyme Universal B9
Cobalamin (cbl1) Certain isomerases and methyltrans-

ferases, not essential in K-12
Prosthetic
group

Conditional B12

Menaquinone
8(mqn8)

Electron carrier Coenzyme Conditional
(quinones)

K2

Ubiquinone 8 (q8) Electron carrier Coenzyme Conditional
(quinones)

-

2-Demethylmena-
quinone 8
(2dmmq8)

Electron carrier Coenzyme Conditional
(quinones)

-

the metabolic capabilities of a cell by integrating all of the experimentally determined enzymatic

reactions taking place in an organism [7–10]. These predictions are enabled simply based on the

stoichiometric constraints of the organisms metabolic network and metabolic interactions with

the environment. Therefore, a focus of development in the field of genome-scale models has been

to increase the scope and capabilities of M-models [11].

Recently the capabilities of M-models have been leveraged by a multi-strain modeling

workflow that can be used to construct strain-specific metabolic models for a variety of different

species including Escherichia coli [12, 13], Staphylococcus aureus [14], and Salmonella [15]. This

modeling approach has shown that the metabolic capabilities of a strain can be predicted with

relative accuracy starting with a high-quality genome-scale model of an organism and whole-

genome sequencing of individual strains [16]. Most of these 55 strains of E. coli have evolved

the ability to produce all essential biomass constituents from glucose and a limited number of
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inorganic salts. Despite the clear evolutionary benefit of maintaining an ability to grow in the

presence of scarce resources, throughout their evolutionary history, certain strains of E. coli have

shed–or possibly never evolved–the ability to synthesize some metabolites. The cause for this

is can be logically inferred in some cases. For example, it is known that E. coli can become

dependent on supplemented branched chain and aromatic amino acids when exposed to high

levels of oxidative stress [17]. This is due to enzymes in the biosynthetic pathways of these

metabolites that are sensitive to oxidative damage. Therefore, it is likely that auxotrophies for

these amino acids can evolve as a method to mitigate high reactive oxygen species (ROS) stress.

This could be particularly beneficial for pathogenic strains, which experience high oxidative

stress levels during the immune response. Alternatively, auxotrophies can evolve as a mechanism

for cells to adapt to growth in community. The specific ways that auxotrophies can shape cell

metabolism, however, have not been studied in detail.

The 55 multi-strain reconstructions demonstrated that M-models were effective in pre-

dicting growth supporting nutrients of an organism. However, these models are not capable of

mechanistically accounting for the unique proteome that supports growth on these nutrients,

such as the unique cofactor requirement. In M-models the cofactors are either enzyme prosthetic

groups and have no modeled metabolic function (pyridoxine, biotin, etc.) or are recycled (NAD,

folates, etc.), meaning there is no metabolic process driving their biosynthesis. Thus they have

often been incorporated into the biomass objective function to force the essential biosynthetic

activity of synthesizing these cofactors [18]. The inclusion of cofactors into biomass objective

functions has been studied across various bacterial and archaea species providing insight into

the essentiality of individual cofactors in prokaryotes [19]. However, even when included in the

biomass objective function, a negligible amount of each cofactor is required to be synthesized for
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growth, causing cofactor synthesis to have little impact on metabolism overall. Furthermore, the

specific requirement of the cofactors is largely condition independent. Modeling efforts have been

made to assess how the biomass function composition (lipid and amino acid composition) affects

metabolic fluxes [20]. A mechanistic model, however, has not been employed to relate cofactor

availability to condition dependent metabolism.

To that end, M-models have been extended to include the synthesis of the gene expression

machinery and its use to compute the entire metabolic and gene expression proteome [21–23].

These models integrate Metabolism and Expression on the genome-scale, termed ME-models, and

they are capable of explicitly computing over 80% of the proteome by mass in enterobacteria.

ME-models enable a wide range of new biological questions to be investigated including direct

calculations of proteome allocation [24], metabolic pathway usage, and the effects of membrane

and volume constraints [22]. Furthermore, their ability to compute the optimal proteome abun-

dances for a given condition make them ideal for mechanistically integrating transcriptomics and

proteomics data.

ME-models include a mechanistic accounting of all of the components required to produce

a functioning proteome (Figure 4.1). This means that for a particular enzymatic reaction to carry

flux in the model, not only must the amino acids be synthesized in the proper proportions, but

enzyme cofactors must be produced as well. Further, given that many common auxotrophies

include enzyme cofactor vitamins, ME-models are a suitable tool to address the consequences of

these auxotrophies on a genome scale. Here we address these questions by applying the E. coli

ME-model to examine the relationship between growth condition and cofactor demand along with

the metabolic consequences of auxotrophy. This work presents the first effort to comprehensively

study the role that essential cofactors play in defining the metabolic capabilities of E. coli .
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Figure 4.1: Difference in M- and ME- model scope. M-models offer a means to comprehensively
probe the range of enzymatic conversions possible within an organism. This information can
be used to predict possible growth supporting nutrient environments [12, 25]. ME-models add
additional information about the proteome sustaining the growth state by including a mechanistic
accounting of enzyme synthesis. This provides the ability to study how proteome allocation and
cofactor use affects condition-dependent growth.

4.2 Results

4.2.1 Predicting demand for essential biomass components

ME-models include an explicit accounting of the steps required to produce a functioning

enzyme, making them capable of predicting the condition-specific synthesis demand of most es-

sential biomass components. This enables iJL1678b-ME , the most recent E. coli K-12 MG1655

ME-model reconstruction, to predict abundances of enzyme prosthetic groups. However, coen-

zymes such as NAD and folates are recycled throughout the network and are therefore not

synthesized by default. iJL1678b-ME was thus modified to formally describe the activity of

these coenzymes and to couple coenzyme synthesis to its metabolic function (see Methods). Fol-

lowing these modifications, the synthesis fluxes provided by iJL1678b-ME agreed relatively well
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with the iJO1366 biomass objective function under aerobic and anaerobic in silico conditions

(Figure 4.1). The amino acid synthesis fluxes agree best with the iJO1366 BOF since these

have little dependence on the activity of individual enzymes and are more properties of global

protein amino acid proportions. Likewise there is little change between aerobic and anaerobic

simulations.

Unlike amino acids, the majority of the cofactor and micronutrient coefficients used in

the iJO1366 core objective function are not derived from empirical data but rather included

in low amounts to more correctly compute gene essentiality [19]. Therefore, the quantitative

comparison of ME-model predicted in silico micronutrient demand to the M-model biomass

objective function holds little meaning. As a result, the growth rate dependent synthesis of these

micronutrients has a negligible effect on the computed fluxes overall.

There is a stark difference in cofactor demand between the aerobic and anaerobic com-

puted fluxes. This stems from the fact that predictions provided by the ME-model are dependent

on the activity of specific reactions as well as the kinetic parameters used to couple reaction flux

to enzyme abundance [26]. Therefore, processes/reactions such as oxidative phosphorylation

and pyruvate dehydrogenase that are not used in anaerobic conditions see a decrease in their

accompanying cofactors, ubiquinone and thiamine diphosphate (vitamin B1), respectively.

4.2.2 Growth condition-dependent cofactor demand

iJL1678b-ME was used to simulate growth on 552 nitrogen, phosphorus, sulfur, and

carbon sources under aerobic and anaerobic in silico conditions and the activity of each cofactor

was found. A high degree of variability was observed for many of the cofactors depending on the

particular nutrient source (Figure 4.3). These differences in cofactor demand stem from the fact
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Figure 4.2: Comparison of ME-model and M-model predicted amino acid and cofactor growth-
normalized synthesize rates. The ME-model predictions are a function of the predicted intra-
cellular fluxes provided by the simulation, whereas the M-model values are provided by the
biomass objective. ME-model predictions are shown for aerobic and anaerobic in silico condi-
tions. Metabolites are in black or red if their M-model coefficient value was taken from the core
objective function or the wild-type objective function, respectively.
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Figure 4.3: Condition-dependent synthesis demand of common enzyme cofactors. The upper
left panel shows the cofactors that are conditionally required, clustered by growth condition.
The nutrient sources are shown in red, green, yellow, and black for phosphorus, nitrogen, sulfur,
and carbon sources, respectively. The light colors indicate anaerobic simulations while the dark
colors indicate aerobic simulations. The top right panel shows a clustering of the Z score values
of the growth normalized cofactor synthesis values computed from the ME-model. The bottom
panel depicts the 6 carbon, nitrogen, phosphorus, and sulfur sources that most severely increase
or decrease demand of the cofactor on the x axis is shown on below. The heatmap is colored
based on the log2 fold change between the cofactor demand for the nutrient source listed and the
median demand for all growth conditions.

that the simulation for each feasible growth supporting nutrient possesses a unique metabolic

state sustained by a unique proteome. Thus, the cofactors required to support this proteome

differ accordingly.

A subset for enzymatic cofactors was computationally predicted to be synthesized only

in some growth conditions. The use of some of these cofactors (e.g., ubiquinone-8, pheme,

and hemeO) differed largely based on whether simulated under aerobic or anaerobic conditions
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(Figure 4.3). This is the expected behavior for these cofactors, as they are primarily required

for aerobic respiration functions. The demand of other cofactors such as adenosylcobalamin

and siroheme are specific to individual growth conditions. For example, adenosylcobalamin is

computationally required for growth only when the carbon or nitrogen source is ethanolamine,

since this adenosylcobalamin in an essential cofactor for ethanolamine ammonia-lyase, the first

step of ethanolamine catabolism. Siroheme is required in most growth conditions as a prosthetic

group for sulfite reductase, an essential stop in the reduction of sulfate to hydrogen sulfide for

sulfur assimilation. Growth in other sulfur sources such as cysteine and cysteine derivatives is

computationally predicted to alleviate the need for siroheme.

Likewise, the universally synthesized cofactors cluster based on the aerobicity of the

simulations (Figure 4.3). The differential clustering is primarily driven by differences in the

growth normalized demand of biotin, NAD(P)H, iron moieties, and CoA. The observed differences

in NAD(P)H and iron demand are easily explainable by an increase in glycolytic/fermentation

activity and a decrease in oxidative respiration for anaerobic metabolism relative to aerobic.

The observed increase in biotin and CoA demand in anaerobic conditions suggest an increase in

relative lipid metabolism under this growth condition. Other cofactors such as tetrahydrofolate,

thiamine, and pyridoxine appear to be required at similar levels under aerobic and anaerobic

conditions.

There are specific growth conditions, however, that significantly increase or decrease

the demand of all cofactors. The three nutrient sources that most dramatically increase or

decrease the computed growth normalized metabolic demand for each of the cofactors are also

shown in Figure 4.3. The change in growth normalized cofactor demand ranged from 46 to

1/18 fold compared to the median demand for each cofactor across all conditions. L-alanine as
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an anaerobic carbon substrate provides the highest increase and L-glutamine as an anaerobic

carbon source provided the largest increase and decrease in thiamin and riboflavin demand,

respectively. This information can be used to design cellular microenvironments to increase or

decrease the susceptibility of E. coli to some antibiotic treatments. For example, antifolates that

inhibit the synthesis of tetrahydrofolate are a commonly used antibiotic. This analysis would

suggest that cells in a glycine rich microenvironment would be more susceptible to antifolate

treatment, due to the 22 fold increase in folate demand (Figure 4.3).

Beyond prospective design, this information provides insight into possible factors un-

derlying E. coli evolution. It is predicted that anaerobic growth on ethanolamine displays the

lowest growth normalized cellular requirement for tetrahydrofolate, biotin, and pyridoxine of all

the nutrient sources tested. While this substrate cannot grow in E. coli as a sole carbon source,

ethanolamine is abundantly found in the animal gut as a byproduct of lipid degradation [27].

Ethanolamine has also been shown to be beneficial to growth in some strains of E. coli when

provided as a supplemental nitrogen source in addition to ammonium [28]. The computational

results shown in Figure 4.3 suggest that supplementing this metabolite could improve growth

by decreasing the cellular demand of a subset of the essential cofactors. Furthermore, since

this trend is only seen when ethanolamine, not nitrogen, is supplemented as a carbon source,

this effect is likely the result of an increase in the acetaldehyde produced during ethanolamine

catabolism.

4.2.3 Relating auxotrophy and E. coli metabolism

As demonstrated above, ME-models offer the unique ability to comprehensively study the

ways that the metabolic demands of an organism can directly influence its use of essential cofac-
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tors. Alternatively, ME-models can be applied to understand the opposite relationship: between

cofactor availability and the metabolic state of the organism. These cofactors are involved in

many important cellular functions, thus their activity can have a profound impact on the cellular

phenotype [29]. Regardless of this fact, throughout their evolution, many strains of E. coli have

lost the ability to synthesize some of these cofactors. To assess these metabolic consequences, the

ME-model was applied to study E. coli auxotrophs in in silico conditions of excess and limited

availability of the auxotrophic metabolite.

Auxotrophy in nutrient excess

Known [12] and computationally predicted [30] gene knockouts that result in auxotrophy

in E. coli were individually imposed in iJL1678b-ME for 16 amino acids and cofactors. Figure 4.4

shows computed percent difference in four features of cell growth compared to the prototrophic

ancestor strain when an excess of the auxotrophic nutrient is available. Essentially, this shows

the computed growth benefit to the cell when the metabolic burden of producing an essential

biomass building block or cofactor is alleviated.

This analysis shows a differential in silico metabolic response between the amino acid

auxotrophs and cofactor auxotrophs. Amino acid auxotrophs in nutrient excess displayed a

general decrease in the activity of proteins susceptible to ROS damage, particularly the arginine

and glutamate auxotrophs. Protein susceptibility to oxidative stress was determined based on

a previous analysis that considered protein structure information and residue 3D location [17].

Furthermore, the amino acid supplemented auxotrophs showed a notable increase in growth rate

accompanied by a decrease in growth yield, while the cofactor supplemented auxotrophs showed

a more modest increase in growth rate but no change in yield.
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Figure 4.4: Growth characteristics in excess of the auxotrophic nutrient shown on the x-axis.
There is a clear differential response to conditions of excess cofactors versus excess amino acids.

Auxotrophy in nutrient limitation

No microbes growth environment is constant throughout its lifespan. The same is true for

any auxotrophic organism, meaning that any auxotroph will experience periods of auxotrophic
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nutrient limitation along with excess. To gauge how nutrient limitation impacts growth, simu-

lations were run with in silico metabolite exposure ranging from the computationally optimal

uptake to 1/20th of the optimal value, and growth rate was optimized. The same features of

the in silico growth state from Figure 4.4 were observed as a function of auxotroph metabolite

uptake. As shown in Figure 4.5, there is notable variability in the sensitivity of the in silico

cells depending on the identity of the auxotrophic metabolite being limited. Most notably, folate

(thf) auxotrophs are computationally predicted to be particularly growth sensitive to drops in

folate availability below the optimal amount. This drop in growth occurs in two phases, one in

which growth drops sharply to 50% of the maximum as 15% of the folate availability decreases.

The second phase displays a gradual decrease in growth from 50% of the maximum growth to 0.

In the first region flux is predicted to be redirected from the oxidative PPP (Phosphogluconate

dehydrogenase) and the TCA cycle toward the acetyl-CoA node, potentially as a sink for NADH.

Further, in folate excess, the Phosphoribosylglycinamide formyltransferase (GARFT) reaction

uses formyl-thf to produce N2-Formyl-N1-(5-phospho-D-ribosyl)glycinamide (fgam), an impor-

tant intermediate metabolite in nucleotide biosynthesis. Folate limitation results in a transition

to using GAR transformylase-T (GART), an ATP driven reaction that can produce fgam from

free formate (see Figure 4.6). Given the rise in antimicrobial resistance to some antifolates an-

tibiotics, understanding metabolic strategies for tolerating folate stress could provide clues for

how to combat this resistance through possible combinatorial therapies.

Nicotinic acid (nac) limitation is predicted to result in an immediate 6% increase in the

number of expressed proteins and up to a 30% increase in the activity of ROS sensitive proteins.

In an nac limited growth state, the cellular polls of reduced and oxidized NADP+ and NAD+

would be highly depleted. Therefore, an optimally growing cell in this state would likely redirect
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Figure 4.5: Growth characteristics of 16 computational E. coli auxotrophs as a function of
availability of auxotrophic metabolites. For each metabolite shown in the legend, reactions were
imposed into the model creating a specific auxotrophy for that metabolite. The growth rate,
iron uptake, protein expression, and growth yield per mol carbon are plotted as a function of
the availability of the metabolite indicated in the legend. The percent change of the plotted
quantities compared to the default prototroph model is shown.

flux into pathways that still maximize growth, but do not require these two cofactors. iJL1678b-

ME predicts that the optimal approach to accomplish optimize NAD+ and NADP+ use is to

upregulate the enter-duteroff pathway (bypassing lower glycolysis), to increase activity of the

glyoxylate shunt to donate electrons to the quinate pool via malate, and to donate electrons to

the quinate pool via pyruvate formate lyase (PFL) and formate dehydrogenase (FDH) (Supple-

mentary Figure 4.3). It is unclear whether the latter metabolic route is feasible since PFL is

only expressed in anaerobic conditions in E. coli K-12 MG1655. Many of these computationally
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Figure 4.6: Model-predicted metabolic changes in response to folate limitation. Left panel:
Fraction of protein allocated to each metabolic subsystem for varying folate availability (rows)
Right panel: Heatmap of log2 fold changes in growth rate normalized reaction fluxes compared
to fluxes computed with excess folate. The reactions with the highest standard deviation are
shown and are highlighted in red if the reaction relies on folate activity. The top row depicts a
simulation with the highest folate availability and bottom row depicting a simulation with the
lowest folate availability.

upregulated pathways are enriched in iron cofactors (e.g., the citric acid cycle) largely accounting

for the increase in iron uptake observed.

4.3 Discussion

The presented work provides the first computational study highlighting the interplay

between E. coli s condition dependent growth state and it cofactor use. Simulations of model

growth on a variety of different growth supporting nutrients suggest that notable variability can be

observed in the demand of cofactors based on the specific growth environment. Such information

can be used to boost the efficacy of antibiotics that target specific cofactors by suggesting ways

to manipulate the cells microenvironment. Further, metabolic consequences accompanying the
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loss of metabolic capability to synthesize one of these cofactors was examined. These results

provide insight into the metabolic consequences and evolutionary drivers of auxotrophy.

This work provides a new look into the inherent coupling between E. coli synthesized

small molecule cofactors and metabolism. A separate integral part of a functional proteome

includes the metal ion cofactors that form the enzymatic center of many enzymes. Due to the

interchangeability of some ion cofactors and intricate mechanisms underlying enzyme mismetal-

lation, fully examining metal ion cofactors was out of the scope of this study [31]. Future work

is warranted to exclusively study the metalloproteome and how metal ion availability shapes

metabolism.

This ME-modeling method could be applied to answer additional questions regarding

cofactor biosynthesis in E. coli . For example, E. coli cannot synthesize vitamin B12 (cobalamin)

from glucose, but when this vitamin is supplemented, E. coli can synthesize various derivatives of

vitamin B12 including adenosylcobalamin. Further, E. coli possesses a handful of enzymes that

require vitamin B12 for catalytic activity. Future work could asses the evolutionary pressures

driving the loss of this synthetic capability.

Lastly, the predictions from this computational study are well suited for future exper-

imental validation. First, many of the vitamin and amino acid auxotrophs are the product of

only single gene knockouts in E. coli K-12 MG1655, meaning these strains either already exist in

single knockout libraries [32] or can be easily synthesized. Adaptive laboratory evolution of these

auxotrophs in low concentrations of the essential nutrients could provide valuable insight into

the way E. coli can adapt to re-invest its protein toward pathways that maximize growth, while

minimizing cofactor use. Second, this work provide predictions of how manipulate the growth

environment of E. coli to potentiate the effect of antibiotics. Testing these predictions in vivo
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would be relatively trivial and could further solidify the utility of this modeling method.

4.4 Methods

4.4.1 Software

All constraint-based modeling analyses were performed using Python 3.6 and the CO-

BRApy software [33], and ME-model operations were performed using the COBRAme framework

[34]. Due to the fact that ME-models are ill-scaled [21], qMINOS [35, 36], which supports quad

(128-bit) precision, was used for each ME-models simulations. M-model simulations were per-

formed using the iJO1366 model of E. coli K-12 MG1655 metabolism [37], since this is the model

that iJL1678b-ME was reconstructed from. All M-model optimizations were performed using the

Gurobi (Gurobi Optimization, Inc., Houston, TX) linear programming (LP) solver.

4.4.2 ME-model parameterization

The keff coupling parameters [21] for each metabolic reaction in iJL1678b-ME were de-

termined based on a machine learning approach that incorporated enzyme and network features

to predict keffs [26] from a set of in vivo derived turnover rates [38]. The remaining keffs for

expression machinery and transport reactions were set to 65 s-1 as these processes were out of

the scope of the machine learning approach.

4.4.3 Coupling cofactor activity to biosynthesis demand

The iJL1678b-ME ME-model of E. coli K-12 MG1655 was used for all simulations in

the presented work. The activity of enzyme prosthetic groups are inherent in the ME-model

formulation [21], which uses coupling constraints to couple the activity of individual enzymes
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(including their accessory groups) to the reaction they catalyze. Coenzymes (NAD, folates, etc.)

have some of the same properties of enzymes in that they are recycled within the network in

both M- and ME- models. These models ensure that the cofactors are balanced, but they do not

account for the biosynthesis of these coenzymes. As a result, models have incorporated these

coenzymes in a biomass function to force their biosynthesis in a way that is independent on the

coenzymes activity in the model.

The iJL1678b-ME ME-model was thus modified to couple the biosynthesis of coenzymes

to their activity, similar to other enzymes in the model. This is accomplished using a pseudo-

kinetic term to relate the concentration of the coenzyme pool to its activity throughout the

metabolic network, which we will simply call kactivity. This term represents a very rough estima-

tion of the individual kinetics of all of the reaction involving the coenzyme in the network. This

term was chosen as 1x104 hr−1 and applied to each reaction where the uncharged version of the

coenzyme acts as a reactant:

(1 +
mu

kactivity
) uncharged coenzyme + met 1→ charged coenzyme + met 2

For this study, we are interested in the relative activity of these coenzymes across varying

growth conditions with decreases in relative coenzyme availability. It is important that the

computed coenzyme abundances are within a reasonable range (Figure 4.2), but quantitative

accuracy of the abundance predictions are not necessary. Therefore, accounting for the complex

kinetics of the coenzymes throughout the reconstruction was outside the scope of this work. This

approach effectively scales the rate of coenzyme biosynthesis linearly with its metabolic activity

and growth rate.
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4.4.4 Optimization Procedure

Due to non-linearities stemming from the cofactor and enzyme coupling coupling con-

straints ME-models cannot be optimized using a binary search algorithm. To perform the binary

search, the following procedure was implemented. First, each symbolic coefficient or reaction

bound was compiled into a function by sympy [39]. Then, a linear program was created for the

linear programming solver, with all of these symbolic functions evaluated at 0. While the model

will always be feasible at 0, starting with a known feasible point results in a basis which can be

used to speed up the next run. Afterwards, for each instance of the binary search in µ, values in

the linear program were replaced by recomputed ones, and the problem was resolved using the

last feasible basis.
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Chapter 5

The effect of protein allocation on

bacterial community characteristics

Understanding the fundamental characteristics of microbial communities has far reaching

implications for human health and applied biotechnology. However, much is still unknown re-

garding the genetic basis and evolutionary strategies underlying the formation of viable synthetic

communities. By pairing auxotrophic mutants in co-culture, it has been demonstrated that vi-

able nascent E. coli communities can be established where the mutant strains are metabolically

coupled. A novel algorithm, OptAux, was constructed to design 61 unique multi-knockout E. coli

auxotrophic strains that require significant metabolite uptake to grow. These predicted knock-

outs included a diverse set of novel non-specific auxotrophs that result from inhibition of major

biosynthetic subsystems. Three OptAux predicted non-specific auxotrophic strains–with diverse

metabolic deficiencies–were co-cultured with an L-histidine auxotroph and optimized via adap-

tive laboratory evolution (ALE). Time-course sequencing revealed the genetic changes employed
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by each strain to achieve higher community growth rates and provided insight into mechanisms

for adapting to the syntrophic niche. A community model of metabolism and gene expression

was utilized to predict the relative community composition and fundamental characteristics of

the evolved communities. This work presents new insight into the genetic strategies underlying

viable nascent community formation and a novel computational method to elucidate metabolic

changes that empower the creation of cooperative communities.

5.1 Bacterial communities are ubiquitous in health and biotech-

nology

Microbial communities are capable of accomplishing many intricate biological feats due

to their ability to partition metabolic functions among community members. Therefore, these

microbial consortia have the attractive potential to accomplish complex tasks more efficiently

than a single wild-type or engineered microbial strain . Past applications include applying com-

munities to aid in waste decomposition, fuel cell development, and the creation of biosensors [1].

In the field of metabolic engineering, microbial communities have now been engineered capa-

ble of enhancing product yield or improving process stability by partitioning catalytic functions

among community members [2–8]. Beyond biotechnology applications, studying microbial com-

munities also has important health implications. This includes providing a better understanding

of the gut microbiome and how it is affected by diet and other factors [9, 10]. For example,

metabolic cross-feeding in communities has been shown to have a role in modulating the efficacy

of antibiotics treatments [11]. Developing new computational and experimental approaches to

better understand the creation of viable microbial communities and the inherent characteristics
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of established communities could therefore have far reaching implications.

Experimental methods developed to study how simple communities form Synthetic

communities have been constructed to study their interactions and new metabolic capabilities.

One such study encouraged synthetic symbiosis between E. coli strains by co-culturing an L-

isoleucine auxotroph with a L-leucine auxotroph [12, 13]. It was observed that the community

was able to grow in glucose minimal media without amino acid supplementation due to amino

acid cross-feeding between the mutant pairs. Mee et al. expanded upon this work by studying all

possible binary pairs of 14 amino acid auxotrophs and developing methods to predict the results

of combining the auxotrophic strains into 3-member, 13-member, and 14-member communities

[14]. Similarly, Wintermute et al. observed community formation using a more diverse set of

auxotrophs by co-culturing 46 conditionally lethal single gene knockouts from the E. coli Keio

collection [15]. This work demonstrated that synthetic mutualism was possible in strains beyond

amino acid auxotrophs [16]. These studies also demonstrated that new viable communities can

be established in relatively short time frames (¡4 days) by pairing auxotrophic strains.

In addition to establishing syntrophic growth, nascent auxotrophic communities can be

optimized by adaptive laboratory evolution (ALE) [17]. Expanding upon the experimental work

in Mee et al. [14], Zhang et al. performed ALE on one of the co-culture pairs: a L-lysine

auxotroph paired with a L-leucine auxotroph [17]. Separate co-cultures evolved to growth rates

3-fold greater than the parent, which was accomplished, in part, by forming different auxotroph

strain abundances within the community. Similarly, Marchal et al. evolved co-cultures of two

E. coli amino acid auxotrophs and sequenced the endpoint strains. This data was leveraged to

identify mutations hinting at changes in the spatial structure that occurred during the evolution

[18]. Studies of evolved co-culture pairs composed of different microbial species have also used
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sequencing data and mutational analysis as a crucial component of interpreting adaptive strate-

gies [19, 20]. The success of the above work demonstrated that ALE can be used to optimize

auxotrophic communities and that mutational data provide valuable insight into mechanisms

underlying the evolved improvements in community growth rates.

New computational methods are needed Computational methods have been established

to study the characteristics of microbial communities. These methods often apply genome-scale

metabolic models (M-models) [21–23]. Computational models have been created that use multi-

compartmental flux balance analysis (FBA) [23–26], dynamic flux balance analysis (dFBA) [17,

27], dFBA integrated with spatial diffusion of extracellular metabolites (COMETS) [28], and

FBA with game theory [29]. Novel algorithms have also been developed to describe general com-

munity characteristics (OptCom [30]) and dynamics (d-OptCom [31]). These algorithms employ

a bilevel linear programming problem to find the metabolic state that maximizes community

biomass while also maximizing the biomass objectives of each individual species [32]. Numerous

ecological models have also been formulated to describe community dynamics [33–35].

Despite the significant advances made by the above modeling approaches, most methods

were not intended to model suspension batch ALE experiments. For instance, ALE batch exper-

iments in suspension assume growth in excess, well-mixed nutrients, thus negating the need for

diffusion considerations (COMETS) or dynamic shifts in nutrient concentrations (dFBA). Also,

in order for the strains to persist serial passage in an ALE experiment, it can be assumed that

the cells in co-culture are growing, on average, at the same rate, thus negating the need for a

bilevel growth objective that allows for varying growth rates of community members (OptCom).

Additionally, given the growing appreciation for the role limited protein availability has on gov-

erning fundamental bacterial growth characteristics [36], it is likely that protein allocation plays
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a role in defining fundamental community characteristics as well. Therefore, there is a need for an

applicable approach to model this experimental condition in a way that accounts for the protein

cost of metabolism.

Here, we elucidate the genetic mechanisms underlying the formation of syntrophy be-

tween co-cultures of auxotrophic mutants containing diverse biosynthetic deficiencies. We first

introduce the OptAux algorithm for designing auxotrophic strains that require high amounts of

supplemented metabolites to grow (Figure 5.1A). The OptAux solutions provided a catalog of

auxotrophic mutants representing a diverse set of metabolic deficiencies. From the catalog, four

auxotrophic mutants were selected to co-culture and optimized via adaptive laboratory evolu-

tion (ALE) (Figure 5.1B). To increase the growth rate of the nascent co-culture communities,

significant metabolic rewiring had to occur to allow the strains to cross-feed the high levels of

the necessary metabolites. Some strains additionally had to adapt to marked changes in their

homeostatic metabolic state, resulting from the inhibition of a major biosynthetic subsystem.

The genetic basis accompanying this rewiring was assessed by analyzing the genetic changes

(mutations and observed genome region duplications) over the course of the ALE. This muta-

tional analysis further enabled predictions of primary metabolite cross-feeding and community

composition.

To study the characteristics of the ALE-optimized communities, a community model of

metabolism and expression (ME-model) was constructed [37–39] (Figure 5.1C). Such a model-

ing approach was necessary since previous methods of genome-scale community modeling have

focused on studying the metabolic flux throughout community members (using M-models) with-

out consideration of the enzymatic cost of the proteins that drive these metabolic processes. As

proteome optimization via niche partitioning and cell specialization is a driving factor of viable
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community formation in ecological systems [40–43], it is essential to consider proteomic con-

straints when studying bacterial communities. To this end, community ME-models were utilized

to interpret the nascent communities.

5.2 Results

5.2.1 OptAux Development and Simulation

The OptAux algorithm was designed to find metabolic reactions in E. coli that, when

knocked out, will result in novel auxotrophies. This algorithm was implemented by selecting

a metabolite of interest and applying OptAux to identify sets of reaction knockouts that will

increase the required uptake of the metabolite in order for the cell to computationally grow

(Figure 5.2A). OptAux was built by modifying an existing concept introduced for designing

metabolite producing strains [44] which was later additionally implemented in a mixed-integer

linear programming (MILP) algorithm (RobustKnock [45]). Three key modifications were made

to derive OptAux from RobustKnock. First, the inner growth rate optimization was removed so

that OptAux can be run at a predetermined growth rate (set biomass constraint, Figure 5.2B).

This ensures that OptAux designs computationally require the uptake of the target metabolite

at all growth rates (Figure 5.2A, Figure A in S1 Appendix). Second, the objective coefficient

was reversed in order to allow the algorithm to optimize for metabolite uptake as opposed to

secretion. Third, a constraint was added to allow adjustments in the specificity of OptAux

solutions (see Methods). This constraint allows the OptAux simulation to uptake any addi-

tional metabolite that can be consumed by the model (competing metabolite uptake threshold

constraint, Figure 5.2B). Without this constraint, many OptAux predicted designs have the
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Figure 5.1: Study overview (A) An algorithm was developed to de novo predict reaction dele-
tions that will produce E. coli strains auxotrophic for a target metabolite. (B) From the set of
auxotrophic strain designs, pairs were selected to determine whether they were capable of form-
ing a viable syntrophic community. (C) The chosen co-cultures were both evolved via adaptive
laboratory evolution and modeled using a genome-scale model of E. coli metabolism and expres-
sion (ME-model) [37, 39]. The model predictions of fractional strain abundances and metabolite
cross-feeding were compared to inferred results from the co-culture evolution experiments.
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potential to additionally grow in the presence of other metabolites outside of the target metabo-

lite. For instance, it is possible that OptAux-predicted L-glutamate auxotroph mutants could

alternatively grow when supplemented with L-glutamine or other metabolites as well. There-

fore, specificity, in this case, refers to whether the mutant strain will be auxotrophic for a given

metabolite in the presence of other metabolites. High specificity solutions are auxotrophic for

only one metabolite, regardless of whether other metabolites are present. The implementation

described above allowed OptAux to identify strain designs requiring the targeted metabolite at

all growth rates with varying degrees of metabolite specificity.

OptAux was utilized on the iJO1366 M-model of E. coli K-12 MG1655 [46, 47] to compre-

hensively examine auxotrophic strain designs. OptAux was run with 1, 2, and 3 reaction knock-

outs for 285 metabolite uptake reactions using 4 different competing metabolite uptake threshold

values (S1 Data). Of the given solutions, 233 knockout sets were found to be capable of pro-

ducing 61 unique strain auxotrophies. This set of strain designs provides an expansive look into

the auxotrophies possible in the E. coli K-12 MG1655 metabolic network, which could be used

to understand the possible niches that E. coli could inhabit in natural or synthetic communities

[48].

5.2.2 OptAux Solution Characteristics

The OptAux strain designs were broken into two major categories based on the num-

ber of individual metabolites that, when supplemented, can restore cell growth: 1) Essential

Biomass Component Elimination Designs (EBC, Figure 5.3A) and 2) Major Subsystem Elimi-

nation Designs (MSE, Figure 5.3B). The EBC designs are characterized as auxotrophic strains

with high metabolite specificity. They were broken into two subcategories: specific auxotrophs
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Figure 5.2: OptAux design A) OptAux was developed to maximize the minimum possible
uptake of a target metabolite required for the model to grow. In other words, OptAux tries
to increase the flux value at the intersection of the defined growth rate (set biomass) and the
minimum possible metabolite uptake flux (depicted with the red circle). Unlike algorithms such
as OptKnock with tilting [44] and RobustKnock [45], the OptAux optimization occurs at a
predetermined growth rate as opposed imposing an inner growth rate optimization. This change
was made to ensure that all OptAux designs will computationally require the uptake of a target
metabolite at all growth rates, particularly low growth rates. The dotted lines show the required
uptake for the metabolite with no genetic interventions. In this case, uptake of the target
metabolite is not required at any growth rate. The solid black lines depicts the maximum
and minimum uptake required for a particular metabolite in an OptAux designed strain. (B)
The OptAux optimization problem. See Methods for further description of the algorithm and
underlying logic.
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(only one metabolite can restore growth, Figure B in S1 Appendix) which consisted of 107

(20 unique) knockout sets and semi-specific auxotrophs (defined as strains in which less than

5 metabolites individually can restore growth, Figure B in S1 Appendix) which consisted of 67

(21 unique) knockout sets. The specific and semi-specific EBC designs were preferred at high

competing metabolite uptake threshold values.

There is notable overlap between OptAux predicted EBC designs (or those that are

computationally identical), and known E. coli auxotrophic mutants [14, 49–60]. A summary of

experimentally characterized OptAux designs is presented in Table A in S1 Appendix. Of note,

there are 4 designs that were not found to be previously characterized in the scientific literature,

and these present potential novel E. coli auxotrophs.

MSE designs were preferred at low competing metabolite uptake threshold values and

produce E. coli mutant strains with a diverse set of major metabolic deficiencies. These designs

were defined as highly non-specific auxotrophic strains in which 5 or more metabolites could

individually restore growth in the mutant strain. MSE designs consisted of the remaining 59

(20 unique) sets of knockouts. The MSE knockout strategy was often accomplished through

knockouts that block metabolic entry points into key biosynthetic subsystems (Figure B in S1

Appendix). One such example of an MSE design is given in Figure 5.3B. Here a three reaction

knockout design of the FUM, PPC, and MALS reactions can be rescued by one of the four

compounds in the figure (i.e., citrate, L-malate, 2-oxoglutarate, or L-asparagine) at an average

required uptake flux of 0.4 mmol gDW-1 hr-1 to grow at a rate of 0.1 hr-1. These rates are higher

than the fluxes needed to rescue the EBC design in Figure 5.3A, which requires L-asparagine

uptake of 0.024 mmol gDW-1 hr-1 on average to grow at a rate of 0.1 hr-1. Another example of

a novel MSE design was a glutamate synthase (GLUSy) and glutamate dehydrogenase (GLUDy)
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Figure 5.3: OptAux solutions Two major solution types are possible depending on the pa-
rameters used when running OptAux. (A) Essential Biomass Component Elimination designs,
like the ASNS1 and ASNS2 knockout shown, can grow only when one specific metabolite is
supplemented. For the case shown, this metabolite is L-asparagine. (B) Alternatively, Major
Subsystem Elimination designs have a set of alternative metabolites that can individually restore
growth in these strains. Examples of these designs are shown for citric acid cycle knockouts sets.
One specific three reaction knockout design (FUM, PPC, MALS) is shown in red dashed lines
where four metabolites in the figure can individually rescue this auxotroph (marked with solid
red circles). The metabolites that can restore growth for each of the knockout strain designs
listed in the legend are indicated by the colored circles.
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double knockout which effectively blocks the entry of nitrogen into amino acid biosynthesis by

preventing its incorporation into 2-oxoglutarate to produce L-glutamate. This renders the cell

unable to produce all amino acids, nucleotides, and several cofactors. In order to grow at a rate

of 0.1 hr-1, this strain is computationally predicted to require one of 19 individual metabolites

at an average uptake of 0.62 mmol gDW-1 hr-1 (S2 Data).

MSE designs are of particular interest as they are often unique, non-trivial, and have not

been studied in the context of E. coli auxotrophies. However, some of the MSE single knockouts

have been used for a large-scale study of auxotrophic co-culture short term growth [16]. Since

these predicted MSE knockouts disrupt major metabolic flows in the cells biochemical network,

they produce auxotrophies that require much larger amounts of metabolite supplementation in

order to grow, compared to EBC designs (e.g., Figure C in S1 Appendix). To grow in co-culture,

MSE E. coli mutants would require a pronounced metabolic rewiring and likely additional adap-

tation to a new homeostatic metabolic state, making them attractive to study from a microbial

community perspective. Additionally, any strain paired with an MSE strain in co-culture would

be required to provide a relatively high amount of the MSE strains auxotrophic metabolites to

enable community growth.

5.2.3 Adaptive Laboratory Evolution of Auxotrophic E. coli Co-cultures

To demonstrate how the OptAux algorithm can be leveraged to design strains and co-

culture communities, E. coli auxotrophic mutants were validated in the wet lab and evolved

in co-culture. Three communities were tested, each consisting of pairwise combinations of four

OptAux predicted auxotrophs. This included one EBC design, ∆hisD , which was validated as

an L-histidine auxotroph, paired with each of three MSE designs, ∆pyrC , ∆gltA∆prpC , and
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Table 5.1: Starting and final growth rates, along with fractional strain abundance of the ∆hisD
strain (by characteristic mutation), for each ALE lineage. The cumulative number of cell division
events that occurred throughout the experimental evolutions are also provided [61].

Starting Final Relative Abunde
growth growth -anc of ∆hisD Cumulative Cell

Combo ALE # rate (hr−1) rate (hr−1) (by Mutation) Divisions (x1011)
∆hisD & ∆pyrC 2 0.03 ± 0.01 0.09 ± 0.02 0.29 ± 0.06 4.63
∆hisD & ∆pyrC 3 0.03 ± 0.01 0.15 ± 0.01 0.25 ± 0.09 3.79
∆hisD & ∆pyrC 4 0.03 ± 0.01 0.10 ± 0.02 0.21 ± 0.10 4.58
∆hisD & ∆gdhA∆gltB 5 0.04 ± 0.02 0.15 ± 0.01 0.57 ± 0.09 6.06
∆hisD & ∆gdhA∆gltB 6 0.04 ± 0.02 0.08 ± 0.01 0.55 ± 0.06 3.46
∆hisD & ∆gdhA∆gltB 8 0.04 ± 0.02 0.10 ± 0.02 0.57 ± 0.09 3.04
∆hisD & ∆gltA∆prpC 9 0.09 ± 0.02 0.19 ± 0.01 0.60 ± 0.10 7.50
∆hisD & ∆gltA∆prpC 10 0.09 ± 0.02 0.12 ± 0.02 0.50 ± 0.06 2.88
∆hisD & ∆gltA∆prpC 11 0.09 ± 0.02 0.13 ± 0.01 0.57 ± 0.09 4.77
∆hisD & ∆gltA∆prpC 12 0.09 ± 0.02 0.19 ± 0.01 0.56 ± 0.05 3.57

∆gdhA∆gltB . These three MSE strains had diverse metabolic deficiencies, including disrup-

tions in pyrimidine synthesis, TCA cycle activity, and nitrogen assimilation into amino acids,

respectively (Table B in S1 Appendix). The m̧utant was computationally predicted to be capa-

ble of growing when supplemented with one of 20 metabolites in iJO1366, and the ∆gltA∆prpC

and ∆gdhA∆gltB mutants were predicted to grow in the presence of 14 and 19 metabolites,

respectively (S2 Data, Table D in S1 Appendix).

Four replicates of each co-culture were inoculated and initially exhibited low growth rates

(≤ 0.1 hr−1), suggesting the strains initially showed minimal cooperativity or metabolic cross-

feeding (Figure D in S1 Appendix). Following approximately 40 days of ALE, all 3 co-culture

combinations had evolved to establish a viable syntrophic community, indicated by an increase in

the co-culture growth rate. There was diversity in the endpoint batch growth rates among the in-

dependently evolved triplicates for each of the ∆hisD & ∆pyrC and the ∆hisD & ∆gdhA∆gltB

co-cultures with endpoint growth rates ranging from 0.090.15 hr−1 and 0.080.15 hr−1, respec-

tively. The four successfully evolved independent replicates for the ∆hisD & ∆gltA∆prpC

co-cultures also showed endpoint growth rate diversity ranging from 0.120.19 hr−1 (Table 5.1,
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Figure 5.4A). The relatively large range in endpoint growth rates for all co-cultures could suggest

that a subset of replicates evolved to a less optimal state and thus could potentially be further

improved if given more time to evolve. Alternatively, the slower growing co-cultures could have

found a genetic state that resulted in a local maxima, rendering the co-culture less likely to

increase its growth rate further.

To probe the adaptive strategies of the three co-culture pairs, the genomes of the popula-

tions were sequenced at several time points over the course of the 40 day evolution (Figure 5.4A).

The sequencing data was used to identify genome region duplications and acquired mutations

(Figure 5.4B), providing insight into the specific mechanisms employed by the co-cultures to

establish cooperation.

The relative strain abundance of each mutant was tracked to observe the community

composition throughout the course of the evolution. Each starting strain contained at least one

unique characteristic mutation (Table C in S1 Appendix) that could act as a barcode to track the

community composition (Figure 5.4B, Table 5.1). The breseq mutation identification software

[62] was used to report the frequency of each of these characteristic mutations within a sequenced

co-culture. The characteristic mutation frequency was then used to approximate the fraction of

each strain within the co-culture population. This analysis showed that 2 of the 3 co-culture

combinations maintained similar relative fractions of the two member strains, whereas one co-

culture, ∆hisD & ∆pyrC , consistently maintained a relative ∆pyrC abundance of around three

quarters of the total population (71-79%, Table 5.1). The strains prevalence in the community

could potentially be overestimated if the strains characteristic mutations fell within duplicated

genome regions. To account for this possibility, the relative abundance of each strain in the

populations was additionally computed by comparing the read coverage of the knocked out genes
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Figure 5.4: Representative example of an adaptive laboratory evolution and its downstream
analysis A) E. coli co-cultures were evolved over a 40 day period and the growth rate was pe-
riodically measured. Over this time period the co-cultures evolved the capability to establish
syntrophic growth, indicated by the improvement in community growth rate. (B) Each of the
sampled co-cultures were resequenced at multiple points during the evolution. This information
was used to predict the fractional strain abundances of each of the co-culture members (top
panel, bars represent the computed fractional abundance of the strains in the legend). Sequenc-
ing data was also used to identify duplications in genome regions of the community members
(middle panel) and infer causal mutations that improved community fitness (bottom panel). The
complete set of ALE growth trajectories, inferred strain abundances, gene region duplications,
and mutational analysis can be found in S1 Appendix, S3 Data, S4 Data, and Figs 5-7.
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for each mutant relative to the average read depth. This orthogonal method gave predictions

consistent with those obtained using the characteristic mutation-based method (Figures E-F in

S1 Appendix).

Following the evolutions it was confirmed that all collected ALE endpoint clones remained

auxotrophic and had not evolved the ability to grow in glucose M9 minimal media. Given that

only the large subunit (gltB) of glutamate synthase (catalyzes both glutamate synthase and

glutamate dehydrogenase reactions, Table B in S1 Appendix) was knocked out, it was important

to verify that the cell could not adapt to restore glutamate synthase functionality using only the

small subunit (gltD) [63].

5.2.4 Mutations Targeting Metabolite Uptake/Secretion

Several evolutionary strategies were observed in the mutations identified across the ten

successfully evolved co-culture lineages (Tables E-G in S1 Appendix). One ubiquitous strategy

across all three co-culture pairs, however, was to acquire mutations within or upstream of inner

membrane transporter genes. For instance, numerous mutations were observed in every co-

culture lineage in the hisJ ORF or upstream of the operon containing hisJ. This operon contains

all four genes (hisJ, hisM, hisP, hisQ) composing the histidine ABC uptake complex, the primary

mechanism for L-histidine uptake in E. coli K-12 MG1655 [64]. Seven mutations were found in

the region directly upstream of the operons transcription start site (Figure 5.5). Two of the seven

mutations were further observed in more than one co-culture pairing, with a SNP in one position

(A → G, A → C, or A → T) at 86 base pairs upstream of hisJ ) appearing to be particularly

beneficial as it was identified in the endpoint clone of every lineage except one (ALE # 5). In

three ALEs, a mutation was observed within the hisJ ORF that resulted in a substitution of
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the L-aspartate residue at the 183 position by glycine. Based on the protein structure, this

substitution could disrupt two hydrogen bond interactions with the bound L-histidine ligand in

the periplasm [65]. Alternatively, this mutation could function to modulate translation of the

hisJ operon by altering its mRNA secondary structure. Further mutations were observed that

could affect the binding of the ArgR repressor upstream of the hisJMPQ operon (Table E in

S1 Appendix) or affect the activity of the ArgR protein itself (Table F in S1 Appendix). This

included a 121 base pair deletion and a SNP in the ArgR repressor binding site upstream of hisJ

(Figure 5.5). The mutation in the argR ORF consisted of a frameshift insertion early in the coding

sequence and persisted throughout ALE # 8, appearing in the ∆hisD endpoint clone (Table F

in S1 Appendix). ArgR functions to repress L-arginine uptake and biosynthesis as well as repress

the L-histidine ABC uptake complex [66] in response to elevated L-arginine concentrations. All of

the above mutations could improve L-histidine uptake in the ∆hisD strains either by increasing

the expression, improving the efficacy, or preventing ArgR mediated repression of the HisJMPQ

ABC uptake system.

Beyond improving the uptake of L-histidine in the ∆hisD strain, mutations were observed

that could improve metabolite uptake in the partnering strain. For instance, in the ∆hisD &

∆gltA∆prpC co-culture, two of the evolutions acquired mutations in the kgtP ORF (a trans-

porter of 2-oxoglutarate [67]) that were also present in the ∆gltA∆prpC endpoint clones. These

mutations include a substitution of an L-proline residue with an L-glutamine at the 124 position

and a substitution of a glycine residue with an L-alanine at the 143 position (Table E in S1

Appendix). These two substitutions occurred in the fourth transmembrane helix in the protein

and a cytoplasmic region [68], respectively. These mutations could act to augment the activity

of the transporter or modulate its expression by changing the mRNA secondary structure. The
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Figure 5.5: Mutations affecting inner membrane metabolite transport. Mutations were observed
that possibly affect the activity of four inner membrane transporters. A schematic of the function
or putative function of each transporter is shown. Depicted below the schematics are the locations
of the observed mutations on the operon encoding each of the enzymatic complexes. For example,
all ten evolved ∆hisD strain endpoints possessed at least one mutation in or upstream of hisJ.
This operon includes genes coding for HisJMPQ, the four subunits of an L-histidine ABC uptake
system. A depiction of the activity of this complex is shown, in which energy from ATP hydrolysis
is used to transport L-histidine into the cytosol from the periplasm. Mutations are indicated on
the operon schematics if mutations appear at >10% frequency in more than one flask in an
ALE lineage, and ALE numbers are in bold if the mutation appears in the endpoint clone. The
mutations indicated with a dashed arrow occured in the ∆hisD strain and a solid arrow indicates
they occured in ∆hisD strains partner MSE strain

mutations further could complement the characteristic mutation upstream of the kgtP ORF ob-

served in the starting clone of the ∆gltA∆prpC mutant (Table C in S1 Appendix). Both the

accumulation of mutations associated with this transporter and the fact that the citrate synthase

knockout mutant is computationally predicted to grow in the presence of 2-oxoglutarate suggest
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Table 5.2: Metabolite being cross-fed by the ∆hisD strain to its partner strain, as inferred from
sequencing data.

Pair with
∆hisD

Inferred
Metabolite

Mutation Evidence Duplication Evidence

∆pyrC Orotate Mutations upstream of dctA in
∆pyrC strain in all ALEs (Fig-
ure 5.5)

Broad duplication in portion of
genome containing dctA coding
region in all ALEs (Figure J in
S1 Appendix, S4 Data)

∆gdhA∆gltB L-Glutamate Ale # 8 mutation in ygjI ORF
in ∆hisD strain (Figure 5.5)

ALE # 5/6 targeted duplications
in gltJ coding region (Figure 5.7,
Figure I in S1 Appendix). ALE
# 5 transient duplication in abgT
coding region (Figure 5.7)

∆gltA∆prpC 2-
Oxoglutarate

Starting mutation upstream of
kgtP in ∆gltA∆prpC strain (Ta-
ble E in S1 Appendix). ALE #
9/10 mutations in kgtP ORF in
∆gltA∆prpC strain (Figure 5.5)

that ∆gltA∆prpC could be cross-fed 2-oxoglutarate in vivo when in co-culture (Table 5.2.4).

For the ∆hisD & ∆pyrC co-culture, mutations were consistently observed upstream of

dctA that could function to better facilitate the uptake of a metabolite being cross-fed from the

∆hisD strain to the ∆pyrC strain. The three independently evolved lineages each acquired at

least one mutation upstream of dctA, which were confirmed to be in all ∆pyrC endpoint clones

(Table G in S1 Appendix). The gene product of dctA functions as a proton symporter that can

uptake orotate, malate, citrate, and C4-dicarboxylic acids [69] (Figure 5.5). Model simulations

of a ∆pyrC strain predicted that growth is possible with orotate supplementation, but not with

any of the other metabolites known to be transported by the dctA gene product. Thus, it is

possible these mutations could act to increase the activity of this transporter to allow the ∆pyrC

strain to more efficiently uptake orotate cross-fed by the ∆hisD strain (Table 5.2.4).

Lastly, one lineage of the ∆hisD & ∆gdhA∆gltB co-culture acquired a SNP in the ygjI

coding region and was present in the ∆hisD endpoint clone. This SNP resulted in a substitution

of L-arginine for glycine at position 83, (Table F in S1 Appendix) within a periplasmic region
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and one residue prior to a transmembrane helix of the protein [70]. The function of this protein

has not been experimentally confirmed, but based on sequence similarity, it is predicted to be a

GABA:L-glutamate antiporter [71]. Given that this mutation was seen in the ∆hisD clone, it is

possible that this mutation had the effect of increasing the strains secretion of 4-aminobutyrate

(GABA) or L-glutamate by increasing the expression or modulating the activity of YgjI. Such a

mutation could improve the community growth rate by facilitating the cross-feeding of either these

metabolites to the ∆gdhA∆gltB strain since this strain is predicted to grow when supplemented

with either GABA or L-glutamate (Table D in S1 Appendix).

5.2.5 Mutations Targeting Nitrogen Regulation

Knocking out enzymatic reactions in major biosynthetic pathways likely disrupts the

homeostatic concentrations of key sensor metabolites, thus activating non beneficial stress re-

sponses (e.g., nutrient limited stress responses). The sequencing data was used to elucidate some

of the adaptive mechanisms employed by the co-cultures following these pathway disruptions.

For example, three frameshift deletions and a SNP resulting in a premature stop codon were

observed early in the glnK ORF. These mutations were present in three ∆gltA∆prpC endpoint

clones and one ∆hisD endpoint clone from the ∆hisD & ∆gltA∆prpC co-cultures (Figure 5.6B).

GlnK along with GlnB are two nitrogen metabolism regulators with many overlapping func-

tions. Both regulators are uridylated depending on the relative concentrations of 2-oxoglutarate,

ATP, and L-glutamate. In conditions of high 2-oxoglutarate and ATP concentrations relative

to L-glutamate concentrations, GlnK and GlnB are uridylated causing an increase in glutamine

synthetase activity [72]. However, unlike GlnB, when GlnK is not uridylated it binds to the

AmtB nitrogen uptake complex, thus reducing AmtBs activity [73]. GlnK is also upregulated by
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GlnG of the nitrogen two-component regulatory system in the absence of nitrogen, unlike GlnB

[74]. The citrate synthase knockout strain (∆gltA∆prpC ) in particular could see a disruption in

the homeostatic concentrations of metabolites immediately downstream of the citrate synthase

reaction, including 2-oxoglutarate and L-glutamate. This could impair the ability of the cell

to respond to sensors of nitrogen excess or limitation and respond with the appropriate global

regulatory changes. Removing the activity of this GlnK mediated response system would prevent

any detrimental cellular responses (such as inhibition of the AmtB nitrogen uptake complex) due

to atypical concentrations of the sensor metabolites within the co-culture strains. No mutations

were observed in the alternative nitrogen regulator, GlnB, throughout any of the evolutions.

Mutations found in the ∆gdhA∆gltB strains imply a change in the activity of the two-

component nitrogen regulatory system. The ∆gdhA∆gltB strain in all ∆hisD & ∆gdhA∆gltB

lineages acquired mutations in the open reading frame of at least one gene in the two-component

nitrogen regulator system, consisting of glnG (ntrC ) and glnL (ntrB) (Figure 5.6A) [72]. Amino

acid substitutions were observed in position 18, 86, and 105 of glnG corresponding to the response

receiver domain of GlnG (based on protein families [75]), possibly augmenting its ability to

interact with GlnL. The endpoint clone of ALE # 5 acquired an amino acid substitution of

L-isoleucine to L-serine within a PAS domain of GlnL at position 12. This corresponds to

the protein domain where regulatory ligands bind [76] suggesting this mutation could act to

augment its activity in response to nitrogen availability. Like the citrate synthase knockout,

the ∆gdhA∆gltB strain would likely experience a change in the homeostatic concentrations of

metabolites used to sense nitrogen availability. Thus, it can be hypothesized that the mutations

observed in the nitrogen two-component regulatory system act to augment the expression of

nitrogen uptake and assimilation processes regulated by GlnGL.
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Figure 5.6: Mutations affecting nitrogen regulation. Functions of the mutated genes are summa-
rized, and the location of all mutations are shown on the operon below the schematic. Mutations
are shown if they appear at ¿10% frequency in more than one flask in an ALE lineage, and ALE
numbers are in bold if the mutation appears in the endpoint clone. The mutations indicated with
a dashed arrow occured in the ∆hisD strain and a solid arrow if they occured in ∆hisD strains
partner MSE strain. (A) Mutations were acquired within the open reading frame of both genes
comprising the nitrogen sensing two-component regulatory system. Shown in the schematic is
the regulatory cascade in which nitrogen concentration is sensed (via GlnK or GlnB) by GlnL.
In response to low nitrogen availability GlnL is autophosphorylated resulting in a subsequent
transfer of the phosphorus group to GlnG. Phosphorylated GlnG upregulates general functions
associated with nitrogen starvation, including increasing GlnK expression [74]. (B) Further, mu-
tations were observed in the ORF of GlnK, one of two nitrogen metabolism regulators, sharing
most functions with GlnB. Both genes become uridylylated in response to high concentrations
of 2-oxoglutarate and ATP and low concentrations of glutamine, which is an indication of ni-
trogen limitation. GlnK-UMP can activate GLNS deadenylation, thus increasing its activity.
Unlike GlnB, GlnK when in a deuridylylated state (indicative of high nitrogen availability) can
be sequestered by the AmtB ammonium transporter reducing its activity [72]

Mutations were also observed targeting osmotic stress responses and nonspecific stress

responses. These are summarized in the S1 Appendix.

5.2.6 Genome Duplications Complement Sequence Changes

A complementary adaptive strategy for improving co-culture community growth was to

acquire duplications in particular regions of the genome (Figures H-J in S1 Appendix). This evo-
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lutionary strategy possibly functioned in some cases to amplify expression of specific transporters

to more efficiently uptake a metabolite that can rescue the strains auxotrophy (also observed in

[77]). Alternatively, these duplications could function to provide genetic redundancy that in-

creases the likelihood of acquiring mutations in the duplicated region [78, 79]. For example, one

of the three ∆hisD & ∆gdhA∆gltB lineages displayed clear increases in sequencing depth near

positions 674-683 kbp and 1,391-1,402 kbp with multiplicities exceeding 15. The former of these

coverage peaks contains 9 genes, including the 4 genes composing the GltIJKL L-glutamate/L-

aspartate ABC uptake system [80]. The latter peak consisted of 10 genes including the 4 genes in

the abgRABT operon, which facilitates the uptake of p-aminobenzoyl-glutamate and its hydroly-

sis into glutamate and 4-aminobenzoate [81]. This suggests that either L-glutamate, L-aspartate,

or p-aminobenzoyl-glutamate could be cross-fed to the ∆gdhA∆gltB strain in vivo. The ab-

gRABT duplication, however, was depleted in favor of the gltIJKL duplication over the course

of the evolution, suggesting L-glutamate or L-aspartate is the preferred cross-feeding metabolite

over p-aminobenzoyl-glutamate (Figure 5.7, Table 5.2.4).

While the duplications mentioned above presented clear amplifications in targeted oper-

ons, some observed duplications consisted of 100,000s of basepairs and 100s of genes. Further,

many of the duplications seen in the populations were not observed in the resequenced endpoint

clones. Possible explanations for these observations can be found in the S1 Appendix.

5.2.7 Modeling Community Features of Auxotroph Communities

Community genome-scale models were applied to understand the basic characteristics of

the co-culture communities generated in this study. Given the growing appreciation for the role

of limited protein availability on governing many fundamental E. coli growth characteristics [36],

135



Figure 5.7: Duplication dynamics. The top panel depicts the dynamics of high multiplicity
duplications in two transport complexes throughout the course of ALE # 5 of a ∆hisD &
∆gdhA∆gltB co-culture. A small region containing the abgT symporter of p-aminobenzoyl
glutamate was duplicated early in the evolution, but later duplications in a region containing
gltJ, along with the rest of the genes comprising the GltIKJL L-glutamate/L-aspartate ABC
uptake system, became more prevalent. The bottom panel depicts the course of ALE # 11, a
∆hisD & ∆gltA∆prpC co-culture that initially showed a broad 1 Mbp duplication. By the end of
the evolution either a nested duplication emerged in a small genome region containing hisJ, along
with the rest of the HisJMPQ L-histidine ABC uptake system, or a significant subpopulation
emerged containing this duplication

community genome-scale models of metabolism and gene expression (ME-models) were utilized.

A new computational approach was also developed, as a community modeling method did not

exist that was suitable for studying co-cultures growing in an ALE experiment while also being

amenable to ME-models (see Methods).

Using community M- and ME-models, the role of substrate and proteome limitations on

basic community characteristics was assessed. To that end, both types of community models

were constrained to uptake no more than 5 mmol
gDW·hr of glucose and simulated over a fractional

∆hisD strain abundance of 0 to 1 (Figure 5.8). The communities were allowed to cross-feed

any metabolite that could restore growth in the partner strain (Table D in S1 Appendix). At

this low glucose uptake rate the community ME-model was being simulated in the so-called
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substrate-limited region [37], meaning that the community growth rate was determined solely by

the amount of substrate available. In this region the protein allocation constraints inherent in the

ME-model were mostly inactive. In the substrate-limited region, the ME-model and M-model

behaved similarly and predicted little change in the community growth rate regardless of the

fractional abundance of the strains in co-culture. Alternatively, the community ME-model was

again simulated, but with an unlimited amount of glucose available to the in silico community.

These simulations therefore occurred in the proteome-limited region of the community ME-model,

meaning that the growth rate was determined by limitations in the protein available to carry out

their enzymatic functions. When simulating the community ME-model in the proteome-limited

region, notable composition-dependent variation in the community growth rate was observed

across all fractional strain abundances (Figure 5.8). Metabolite exchange for substrate and

proteome-limited ME-models was also observed (Figures M-N in S1 Appendix)

ME-model predictions are dependent on parameters that couple protein abundance to

the flux values of the processes or reactions that they catalyze. These are called keffs and are

analogous to the effective in vivo turnover rate of an enzyme. Obtaining these values on a

genome-scale is a notoriously difficult problem [82], and no gold standard set of keffs currently

exists. To account for uncertainty in these keffparameters, proteome limited community ME-

model simulations were repeated using three different keffsets, including one set of naive values (all

keffs = 65) and two sets derived using experimental data (default model [83] and in vivo estimated

keffs [84, 85]). All fractional abundance values within 95% of the maximum community growth

rate were compiled and represented as a kernel density plot. The computed optimal community

compositions (i.e., strain ratios that enabled the fastest computed community growth) showed

relatively good agreement with the experimentally inferred community compositions (Figure 5.8).
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Figure 5.8: Comparison of community M- and ME-models. The simulated growth rates for
fractional strain abundances of ∆hisD ranging from 0 to 1. The top panel shows the community
growth rate predictions of the community M-model and the community ME-model simulated
in glucose-limited in silico conditions. The bottom panel shows growth rate predictions for
the community ME-model simulations in glucose excess conditions. The arrows correspond to
the fractional abundance that provided the highest computed community growth rate. The
fractional abundances with growth rates greater than 95% of the maximum computed value were
represented as a kernel density plot. The high density regions of the kernel density plot aligned
well with the experimentally inferred community compositions, shown in the box plot.

See the Methods for a description of the three keffsets.

The ME-modeling analysis suggested that it may be necessary to consider protein allo-

cation when studying co-culture evolutions, therefore necessitating the use of resource allocation

models, such as ME-models. The community ME-models thus were used to predict how the

community composition could vary depending on basic characteristics of the co-cultures: 1) the

identity of the metabolite that is cross-fed or 2) the enzyme efficiency of the community mem-
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bers. These simulations predicted that the metabolite being cross-fed within the community

could have a sizeable impact on both the community composition and growth rate. This is par-

ticularly true for the ∆hisD & ∆gdhA∆gltB and ∆hisD & ∆gltA∆prpC simulations which

showed that metabolite cross-feeding affected the growth rate and community compositions by

as much as 50% (Figure 5.9A).

The strains growing in co-culture in vivo each undoubtedly differed in the protein cost re-

quired to synthesize the metabolite required by its partner strain. Therefore a proteome efficiency

analysis (see Methods) was performed which showed that the computed optimal community com-

positions (the fractional strain abundance that gave the maximum community growth rate) of all

three co-cultures were moderately sensitive to the strains efficiency (Figure 5.9B). The computed

optimal community composition was most sensitive when the ∆hisD strain’s metabolite export

was less proteome efficient than its partner MSE strain. This observation is not surprising given

that the ∆hisD strain must secrete metabolite(s) to the MSE strain at a much higher flux than

the MSE strain to the ∆hisD strain. Therefore, a decrease in protein efficiency will have a larger

impact on the ∆hisD strain. The community models also unintuitively predicted that, if the

∆hisD strain required a greater protein investment to produce the metabolite required by the

partner strain (i.e., if the ∆hisD strain was less efficient than its partner), the abundances of

the ∆hisD strain would actually increase in the community.

The optimal predicted community composition for the two above computational analyses

shown in Figure 5.9A and B are summarized in Figure 5.9C. The figure shows general agreement

between the computed optimal community compositions and the experimentally inferred com-

munity composition, even after varying key features of the community simulation (metabolite

cross-feeding and protein efficiency). This suggests that community ME-models have the poten-
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Figure 5.9: Community modeling. Community ME-model predicted growth rates computed
with fractional strain abundances of ∆hisD ranging from 0 to 1. (A) The effect of metabo-
lite cross-feeding on community structure. Each curve was computed after allowing each of the
metabolites in the legend to exclusively be cross-fed to the MSE strain. Curves with identical
computationally-predicted optimal strain abundances were grouped and given the same color.
(B) The effect of varying the proteome efficiency of metabolite export on community structure
(see Methods). The analysis was performed on models constrained to only cross-feed the metabo-
lite that was considered most likely to be cross-fed to the ∆gltA∆prpC , ∆gdhA∆gltB , and
∆pyrC strains in vivo based on the sequencing data (2-oxoglutarate, orotate, and L-glutamate,
respectively) (Table 5.2.4). (C) Box plots of experimentally inferred fractional strain abundances
for each sample (bottom two rows, gray and dark blue) and the computationally-predicted opti-
mal strain abundances following variation in the cross-feeding metabolite (top row, blue) and in
strain proteome efficiency (second and third row, red and yellow).

tial to be useful tools for understanding the behavior of simple communities. The same analysis

was performed with the in vivo estimated keffs set of keffs and showed similar behavior (Figure
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O in S1 Appendix).

5.3 Discussion

This work provides genetic-level insight into the adaptation of model-designed nascent

syntrophic communities growing cooperatively in suspension. This effort produced a novel al-

gorithm, called OptAux, which was validated against historical auxotrophs and used to predict

novel auxotrophic strain designs. OptAux-predicted designs with diverse metabolic deficiencies

were co-cultured and community growth was optimized via adaptive laboratory evolution. Se-

quencing these co-cultures throughout the evolutions gave mutation and community composition

information, thus providing insight into mechanisms of cellular cooperation. An additional mod-

eling method was developed to interpret community features and demonstrated the importance

of considering protein synthesis cost when studying cooperative communities in the utilized ex-

perimental conditions.

OptAux was demonstrated to be a useful tool for designing new types of cellular aux-

otrophies. Unlike many previously studied auxotrophies, OptAux enabled the prediction of aux-

otrophs stemming from a diverse set of major metabolic deficiencies. This included the prediction

of 4 potential new essential biomass component elimination (EBC) designs and 20 unique major

subsystem eliminations (MSE) designs. The OptAux-predicted MSE strains themselves could re-

veal further community insights if studied in co-culture. Such a combination would likely require

a significant degree of metabolic rewiring in each strain to form a viable microbial community,

thus probing the alternate evolutionary and cooperative paths such complex combinations could

produce. OptAux is also suitable for predicting new auxotrophies in any organism outside of

E. coli , provided the organism has an existing metabolic reconstruction [86].
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Sequencing co-cultures throughout the course of the evolution experiments offered insight

into the major adaptive mechanisms underlying the evolution of microbial cooperativity. The

observed mutations indicated two major adaptive strategies employed by the strains in co-culture

1) mutating transporters, likely to improve uptake of auxotrophic metabolites (Figure 5.5) and

2) mutating to adapt to homeostatic changes as a result of metabolic disruptions upon imposing

gene knockouts (Figure 5.6). The reported transporter mutations could prove useful for metabolic

engineering applications, as optimizing the metabolite uptake characteristics of transporters can

be an important component of improving the performance of engineering strains [87]. There,

however, were no observed mutations, outside of mutations in a predicted GABA antiporter in a

∆hisD strain, hinting at how the strains were capable of rewiring their intracellular metabolism

to supply their partner strain with the required metabolite (i.e., no observed mutations associated

with biosynthetic pathways). A future direction of this work could be to further evolve these

strains to observe if new mutations appear to enhance metabolite rewiring. Alternatively, it is

possible that the co-cultures grew by clumping and employing nanotube-mediated cross-feeding

[88], which may be explored using microscopy.

Community ME-models were applied to understand the factors that drive community

composition. This was the first community modeling effort to demonstrate the necessity of

considering protein allocation when computationally studying community features. Interestingly,

some of the studied co-cultures evolved to consistent community compositions that skewed away

from a 50:50 strain ratio, a feature the community ME-models were often capable of capturing

(Figure 5.8). Additionally, the community ME-models predicted that, if the ∆hisD strain became

less protein efficient at producing the necessary cross-feeding metabolite, the optimal abundance

of the ∆hisD strain in the co-culture would actually increase (Figure 5.9). Though unintuitive,
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this prediction is in agreement with a paradox highlighted in a previous computational study of

community dynamics [89].

Despite the observed agreement between measured and computed optimal community

compositions, this work highlighted the fact that there are a vast number of variables that could

potentially influence basic features of simple communities. Experimentally assessing important

features such as metabolite cross-feeding and community structure, as touched on here, on a large

scale with many different cohorts and combinations is necessary in order to adequately understand

the behavior of such bacterial communities. Model-driven design of communities and the use of

community ME-models, however, present a more complete computational framework that can

be leveraged as a tool to extract more knowledge from such experiments. Further, community

ME-models offer a means to probe how factors outside of metabolism (e.g., translation efficiency

and proteostasis) could affect community characteristics.

5.4 Methods

5.4.1 Computational Methods

All constraint-based modeling analyses were performed in Python using the COBRApy

software package [90] and the iJO1366 metabolic model of E. coli K-12 MG1655 [46]. All opti-

mizations were performed using the Gurobi (Gurobi Optimization, Inc., Houston, TX) mixed-

integer linear programming (MILP) or linear programming (LP) solver. The community ME-

models were solved using the qMINOS solver in quad precision [91, 92]. All scripts and data

used to create the presented results can be found at www.github.com/coltonlloyd/optaux.
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OptAux Algorithm Formulation For the presented work it was necessary to employ an

algorithm capable of finding reaction knockouts that would ensure the target metabolite is com-

putationally essential in the in silico growth media for all feasible growth rates. To this end, a

new algorithm was written as opposed to implementing a reverse version of RobustKnock (i.e.,

RobustKnock where the target objective is metabolite uptake instead of secretion). A reverse

RobustKnock implementation would optimize the minimum required uptake of a metabolite at

the maximum growth rate, thus leading to strain designs that must uptake a high amount of the

target metabolite only when approaching the maximum growth rate (Figure A in S1 Appendix).

To prevent this computational phenotype with OptAux, the inner problem optimizing for growth

rate, which was utilized in RobustKnock, was removed. The growth rate was instead constrained

to the ‘set biomass‘ value, thus forcing the optimization to occur at a predefined growth rate.

The constraint was implemented by setting the upper and lower bounds of the biomass objective

function to ‘set biomass‘. Using relatively low set biomass values with OptAux ensured the target

metabolite would be computationally required for all feasible growth rates. For the simulations

ran in this study (S1 Data), the ‘set biomass‘ value was set to 0.1 hr−1.

An additional constraint was included in OptAux to represent additional metabolites

present in the in silico media that could alternatively be used for growth, called the ‘com-

peting metabolite uptake threshold‘. It was applied by finding all metabolites with exchange

reactions and a default lower bound of 0 mmol
gDW·hr and increasing the bound to the ‘compet-

ing metabolite uptake threshold‘, thus allowing alternative metabolites in the in silico media to

compete for uptake with the target metabolite. Increasing this threshold ultimately increases

the specificity of the OptAux solution (i.e., whether other metabolites could potentially restore

growth in addition to the target metabolite). In other words, if other metabolites were present
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in the in silico media, would the model still be auxotrophic for the target metabolite? If the

strain would still be auxotrophic, it can be said to have high specificity; if the strain would not

be auxotrophic, it can be said to be non-specific or semi-specific.

The resulting OptAux algorithm is a bilevel MILP (Figure 5.2B) that can be found at

www.github.com/coltonlloyd/optaux.

OptAux Simulations The OptAux algorithm was ran for all carbon containing metabolites

with exchange reactions in iJO1366. The models default glucose M9 minimal in silico media

was used for all optimizations with the maximum oxygen uptake set to 20 mmol
gDW·hr . For each

optimization the target metabolite was selected and the maximum uptake of the metabolite was

set to 10 mmol
gDW·hr . The model was then reduced by performing flux variability analysis (FVA) on

every reaction in the model and setting the upper and lower bounds of each reaction to the FVA

results. If FVA computed that no flux could be carried through the reaction, then it was removed

from the model. Additionally, reactions were excluded from knockout consideration if they met

one of the following criteria: 1) it was an iJO1366 false positive when glucose is the primary carbon

substrate [93] 2) it was essential in LB rich media [15] 3) its annotated subsystem was one of

the following: Cell Envelope Biosynthesis, Exchange, Inorganic Ion Transport and Metabolism,

Lipopolysaccharide Biosynthesis / Recycling, Murein Biosynthesis, Murein Recycling, Transport,

Inner Membrane, Transport, Outer Membrane, Transport, Outer Membrane Porin, or tRNA

Charging 4) it involved a metabolite with more than 10 carbons 5) it was a spontaneous reaction.

Identifying Gene Mutations and Duplications The FASTQ data from the sequencing

samples was filtered and trimmed using AfterQC version 0.9.6 [94]. The quality controlled

reads were aligned to the genome sequence of E. coli K-12 BW25113 (CP009273.1) [95] using
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Bowtie2 version 2.3.0 [96]. Mutations were identified based on the aligned reads using breseq

version 0.32.0b [62]. If the sample was of a co-culture population and not a clone, the predict

polymorphism option was used with a frequency cutoff of 0.025. The output of the breseq

mutation analysis for all samples can be found in S3 Data and on www.aledb.org [97].

Duplications were found by analyzing the BAM sequence alignment files output from

Bowtie using the pysam Python package [98]. Pysam was used to compute the sequencing read

depth at each DNA position within the genome sequence. For population samples, a cutoff of 1.25

x coverage fit mean (a measure of average read alignment coverage over the genome) was used.

This relatively low threshold was used to account for the varying fractional abundances of the

strains in community. A gene was flagged as duplicated in the sample if over 80% of the base pairs

in the genes ORF had alignment coverage above the duplication threshold. Duplications found

in starting strains were excluded from the duplication analysis. Further, the set of duplicated

genes were grouped together if they were located next to each other on the genome. A new

group was created if there existed more than five genes separating a duplicated gene from the

next duplicated gene in sequence (S4 Data).

Aligned read coverage across the E. coli genome is noisy and therefore was filtered before

plotting in order to observe its dominant features. This was accomplished by first splitting the

coverage vector into 50,000 segments, such that each segment represented 100 base pairs, and

the average of the segments was found. Locally weighted scatterplot smoothing (LOWESS) was

then applied to the array of concatenated segments using the statsmodel package in python [99].

For the smoothing, 0.5% of all of the segments was used when estimating each coverage value

(y-value), and zero residual-based reweightings were performed. The remaining parameters were

set to their default.
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Calculating Strain Abundances from Sequencing Data The fractional abundances of

the strains in co-culture were predicted using two features of the sequencing data obtained from

each co-culture sample: 1) the frequency of characteristic mutations of each strain and 2) the

read depth of the knocked out genes.

Each of the stains used in this study possessed a unique characteristic mutation (Table

C in S1 Appendix), which could be used as a barcode to track the strain. The breseq mutation

calling pipeline identified the characteristic mutations of each strain in co-culture and reported

the frequency that the mutation was observed. This information was thus used to track the

strains presence. For strains with two characteristic mutations (e.g., ∆hisD and ∆gdhA∆gltB

) the reported frequency of the genes was averaged and used as a prediction of the relative

abundance of that strain. One mutation in particular, an IS element insertion in yqiC, which

is characteristic of the ∆hisD strain, was not detected in several samples when ∆hisD was in

co-culture with ∆pyrC . This is likely due to the low abundance of the ∆hisD strain in that

particular population. In those cases, the ∆hisD strains abundance was predicted using only the

frequency of the lrhA/alaA intergenic SNP (Figure F in S1 Appendix). For one sample (A10 F23

I1 R1) the sequencing coverage was too low ( 14.5) and the ∆gltA∆prpC characteristic mutation

was not detected. Therefore no relative abundance was computed for this sample.

The second method for computing fractional strain abundances used the sequencing read

alignment to compare the coverage of the deleted genes in each strain to the average coverage of

the sample. As an example, for a strain paired with the ∆hisD strain, the average coverage of

the base pairs in the hisD ORF divided by the average coverage for that sample, would give an

approximation of its relative abundance in the population. As with the characteristic mutation

approach, if the two genes were knocked out in the strain, the average coverage of the two genes

147



was used to make the approximation (Figure E in S1 Appendix).

When reporting the relative abundance predictions (Figs 8 and 9), the computed abun-

dances of each strain were normalized by the sum of the computed abundances of the two strains

in co-culture. This ensured that the abundance predictions summed to one. Predictions made

using the two described methods showed general agreement (Figure F in S1 Appendix).

Community Modeling A community modeling approach was formulated that was amenable

to ME-models and consistent with the characteristics of the ALE experimental design. The ALE

experimental design applies a constant growth rate selection pressure by ensuring the cells are

maintained in exponential growth phase in nutrient excess media conditions. A consequence

of this experimental design when applied to co-culture systems is that the strains in co-culture

must be growing at the same growth rate, on average. If this was not the case, one strain

would be diluted from the culture or there would be dramatic fluctuations in the community

composition, which is not the case (Figure 5.9C). Further, ALE experiments ensure that the

culture is well mixed and grown in an excess of nutrients. These experimental conditions are not

amenable to most existing community modeling methods. One modeling framework exists to

study communities growing in steady state, called SteadyCom [23] (Figure L in S1 Appendix),

though this method is not compatible with ME-models. This is due to the ME-models use

of non-linear macromolecular coupling constraint expressions that are formulated as a function

of growth rate. Therefore, the conversion to aggregate biomass flux used in the SteadyCom

formulation cannot be translated directly to ME-models.

Given the above considerations, a multicompartment FBA approach, similar to commu-

nity FBA [26] was used where the growth rates of the co-culture strains were constrained to

be equal. The community model included one compartment for each of the two mutant strains
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in co-culture and a shared compartment where each of the strains could exchange metabolites.

Further, the fluxes in and out of each strains compartment were scaled by the strains relative

abundance to effectively mass balance the different model compartments (Figure K in S1 Ap-

pendix), thus allowing the relative abundance of each strain to be imposed as a parameter. For

secretion, this was done by multiplying these exchange reactions as follows:

metaboliteStrain1
Vsecrete−−−−−→ XStrain1 ·metaboliteShared

and for uptake:

XStrain2 ·metaboliteShared
Vuptake−−−−→ metaboliteStrain2

where vsecrete is the secretion flux from strain 1 and has units of mmol
gDWStrain1·hr and XStrain1 is the

fractional abundance of strain 1 with units of gDWStrain1
gDWCommunity

. Therefore applying this coefficient

to metaboliteShared gives fluxes in the shared compartment units of mmol
gDWCommunity·hr . For the

subsequent uptake of the shared metabolite by strain 2, the fractional abundance of strain 2 is

applied giving units of mmol
gDWStrain2·hr (Figure K in S1 Appendix).

Using this community modeling approach, the fractional abundance of each strain in the

co-culture was implemented as a parameter that could be varied from 0 to 1, which in turn had

an impact on the optimal growth state of the community. All presented simulations were ran by

optimizing the community growth rate for 10 values of XStrain1 (abundance of strain 1) ranging

from 0.05 to 0.95. For XStrain1 values of 0 or 1 the community growth rate was assumed to be 0

hr−1 given that the co-culture mutants are auxotrophic and require the presence of both mutants

to grow. The metabolites that were allowed to be cross-fed in simulation were limited to the set

of metabolites that can computationally restore the growth of each auxotroph mutant (Table D

in S1 Appendix).
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For the community simulations, the iJL1678b [39] ME-model and iJO1366 [46] M-model

of E. coli K-12 MG1655 were used. For proteome-limited ME-models simulations, the uptake

of metabolites in the in silico glucose minimal growth media into the shared compartment was

left unconstrained, as the ME-model is self limiting [37]. For glucose-limited ME-model and M-

model simulations, the maximum glucose uptake into the shared compartment was constrained to

5 mmol
gDWCommunity·hr . The non-growth associated ATP maintenance and the growth associated ATP

maintenance were set to the default parameter values in the model. For ME-model simulations,

the RNA degradation constraints were removed to prevent high ATP costs at the low community

growth rates. Since the newly formed communities are unoptimized and growing slowly, the

ME-models unmodeled/unused protein fraction parameter was set to a higher value, 0.75, for

proteome limited simulations (an unmodeled/unused protein fraction of 0.65 was imposed when

the in vivo estimated keffs parameter set was used, since these keffs give a lower maximum

growth rate than the other two keffvectors used) and the default value, 0.36, for glucose-limited

simulations. If a metabolite had a reaction to import the metabolite across the inner membrane

but no export reaction, a reaction to transport the metabolite from the cytosol to the periplasm

was added to the model. For more on the ME-model parameters, refer to [39] and [37].

Three different sets of enzyme turnover rates (keffs) were used for the community ME-

model simulations (Figure 5.8). The first set of keffs (all keffs = 65) was imposed by setting

all keffs in iJL1678b-ME equal to 65 s−1. The next set of keffvalues (default model) used the

default set of keffparameters included with iJL1678b-ME. Most of the metabolic keffs in this

default set are determined by scaling a median keffvalue (65 s−1) by an estimation of the solvent

accessible surface area of the enzyme complex that catalyzes the reaction (reference [37] for

further description). The default keffparameters further included a set of 284 metabolic keffs
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derived using proteomics data and a computational method developed in Ebrahim et al. [83].

The last keffset (in vivo estimated keffs) included 234 keffs from Davidi et al. [84] that were

estimated using model-computed fluxes and proteomics data. The keffs not estimated in Davidi

et al. were imputed using the median estimated keffvalue from Davidi et al. (6.2 s−1). For all

three keffsets, all non-metabolic processes were assigned a keffof 65 s−1.

Assessing the influence of metabolite cross-feeding on community composition was per-

formed by restricting the simulation to cross-feed only one of the metabolites computationally

predicted to restore growth in the MSE strain. In doing so, the identity of the metabolite being

cross-fed could be related to the optimal community growth rate and structure.

To vary the proteome efficiency (keff) of secreting the cross-fed metabolites, first the ex-

change reactions into the shared compartment for all potential cross-feeding metabolites were

constrained to zero, except the metabolite inferred from the experimental data (Table 5.2.4).

Then the enzymatic efficiency of the outer membrane transport process of the inferred cross-

feeding metabolite was altered in each strain. The outer membrane transport reactions for each

inferred metabolite (i.e., HIStex, GLUtex, AKGtex, and OROTtex for L-histidine, L-glutamate,

2-oxoglutarate, and orotate, respectively) have multiple outer membrane porins capable of facil-

itating the transport process. To account for this, the keffkinetic parameter of each porin and

reaction was changed by multiplying the default keffvalue by the appropriate multiplier. The

COBRAme software was used for all ME-model computations [39].

Reproducability All code and data necessary to reproduce the presented results can be found

on GitHub at https://github.com/coltonlloyd/OptAux.
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5.4.2 Experimental Methods

E. coli Strain Construction All single gene knockouts used in this work were obtained from

the Keio collection, a collection of all single gene knockouts in E. coli K-12 BW25113 [15]. To

generate double gene knockout strains, the second knockout genes were identified from the Keio

collection as donor strains, and their P1 phage lysates were generated for the transduction into

the receiving single knockout strains. For instance, the ∆gltA or ∆gltB knockout strain was a

donor strain and the ∆prpC or ∆gdhA knockout strain was a receiving strain (Table B in S1

Appendix), respectively. These four knockout strains were used for the construction of the double

knockout strains, ∆gltA∆prpC and ∆gdhA∆gltB . Each mutant was confirmed not to grow in

glucose M9 minimal media without supplementation of an auxotrophic metabolite predicted by

the iJO1366 model.

Adaptive Laboratory Evolution Knockout mutants were each initially grown in lysogeny

broth from a single colony, then washed 3 times and resuspended in M9-4g/L glucose medium.

The washed cells from each knockout mutant preculture were then transferred to fresh M9-4g/L

glucose medium and co-cultured with mutants from the partner strain. Cultures were initially

inoculated with equal numbers of cells from the two relevant auxotrophs, then serially propagated

(100 µL passage volume) in 15 mL (working volume) flasks of M9 minimal medium with 4 g/L

glucose, kept at 37 °C and well-mixed for full aeration. An automated system passed the cultures

to fresh flasks once they had reached an OD600 of 0.3 (Tecan Sunrise plate reader, equivalent to

an OD600 of 1 on a traditional spectrophotometer with a 1 cm path length), a point at which

nutrients were still in excess and exponential growth had not started to taper off. Four OD600

measurements were taken from each flask, and the slope of ln(OD600) vs. time determined the
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culture growth rates. The timescale of the evolution was reported using the cumulative number

of cell divisions, as opposed to generations or days, as mutations occur primarily during cell

division events [61].

Resequencing Co-culture population samples were collected at multiple midpoints throughout

the ALE and sequenced. Additionally, the starting mutant strains and clones of both mutants

isolated from the ALE endpoints were sequenced. The ∆hisD endpoint clone was unable to

be isolated via colony selection for ALE # 11. Genomic DNA of the co-culture populations

and mutant clones was isolated using the Macherey-Nagel NucleoSpin tissue kit, following the

manufacturers protocol for use with bacterial cells. The quality of isolated genomic DNA was

assessed using Nanodrop UV absorbance ratios. DNA was quantified using the Qubit double-

stranded DNA (dsDNA) high-sensitivity assay. Paired-end whole genome shotgun sequencing

libraries were generated using KAPA HyperPlus kits and run on an Illumina MiSeq platform

with a PE600v3 kit or an Illumina HiSeq 4000 with a PE-410-1001 kit for 150bp reads. DNA

sequencing data from this study is available on the Sequence Read Archive database (accession

no. SRP161177).
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Chapter 6

Conclusions

The whole genome sequences that appeared in the mid to late 1990s ushered in the genome

era for microbiology. The availability of all the genetic elements on a genome sequence, in turn,

ushered in the era of microbial systems biology where the simultaneous function of all the gene

products is considered. The basic paradigms of microbial systems biology that have solidified

over the past 20 years are manifested in two fundamental steps: first in the reconstruction

of all the biochemical, genetic, genomic, and structural information available about a target

strain in a formalized fashion, called a reconstruction, and second, in the development of a

mathematical framework that allows computational interrogation reconstruction properties, with

special emphasis on phenotypic traits. These two steps together comprise de facto a multivariate

mechanistic genotype-phenotype relationship.

The first chapter of this dissertation ”The Promise of Systems Biology,” describes the

way metabolic and proteome synthetic networks have been reconstructed and characterized.

Currently, protein structures, proteostasis, and stress responses are being reconstructed at the

genome-scale. We are thus approaching the point in time where we can explicitly compute
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over 90% of the proteome by mass and directly relate the outcome of such computations to

phenotypic functions. These genome-scale models have invaluable utility to predict and guide

hypothesis-driven experimental designs from a genome-scale standpoint and to compare proper-

ties of different strains. The work presented in this dissertation is the next step toward enabling

the use of such models of protein expression to study the metabolic capabilities of new organisms

and metabolic systems.

The second chapter of this dissertation ”A Computational Framework to Empower ME-

model Development,” describes an important landmark toward the goal of empowering the sys-

tems biology community to reconstruct and apply genome-scale models of metabolism and gene

expression (ME-models). These models represent vast knowledge-bases created by bringing to-

gether decades of biochemical research. As a result, these models are complex and often times

difficult to understand. COBRAme was constructed to alleviate many of these difficulties and

optimize the way ME-models are solved and reconstructed. With its release, ME-models for the

first time have a documented computational framework to guide the use of such models. We

anticipate that this software will mark an inflection point in the dissemination of ME-models

throughout the scientific community.

At the heart of a ME-model is the underlying metabolic reconstruction (M-model). There-

fore to bolster future ME-model reconstructions of E. coli K-12 MG1655, iML1515 is presented

in chapter three, ”The next generation E. coli M-model”. In addition to representing the

most highly validated, comprehensive metabolic reconstruction of E. coli K-12 MG1655 to date,

iML1515 provides a rich knowledge-base that can be leveraged to study E. coli K-12 MG1655

in the context of the E. coli species. This was demonstrated by assessing protein sequence and

structural variation among 1000 sequenced E. coli strains. iML1515 was also used as a chassis
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for generating strain specific models of E. coli clinical isolates and metagenome samples of infant

microbiomes.

Chapter four, ”Revealing the intricate relationships between proteome cofactor require-

ments and growth environments,” applies the E. coli ME-model to study how the growth envi-

ronment of E. coli can influence its enzyme cofactor use and its evolution of auxotrophies. This

work extends some of the methods that have been used to assess the catabolic capabilities of the

E. coli species to now assess the growth capabilities of the E. coli species. The growth capabilities

are shown to be influenced by factors such as cofactor availability, etc.

Beyond influencing the growth capabilities of individual organisms, the evolutionary pres-

sure for cells to optimize their proteome is thought to impact the evolution of microbial com-

munities. Chapter five, ”The effect of protein allocation on bacterial community composition,”

tested this hypothesis by pairing model-designed auxotrophic E. coli strains and evolving them

via adaptive laboratory evolution in co-culture in vivo. In order to form a viable community,

the strains in co-culture had to adapt the ability to cross-feed the metabolite required by their

partner strain in order to grow. Sequencing data was collected to observe the adaptive strate-

gies employed by the strains to form viable communities. Computations from a novel co-culture

ME-model was validated against the experimental predictions of the relative strain abundance

of each strain in co-culture. The community ME-model was used to hypothesize how changes in

the protein efficiency of the strains in co-culture could impact overall community characteristics

(e.g., relative strain abundances). This modeling technology could be applied to better design

simple communities often used for industrial biotechnology and–increasingly–for human health

applications. Future work should be performed to isolate individual strains from the co-culture

communities and measure the metabolites each strain is cross-feeding in order for the community
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to grow.

Constraint-based reconstruction and analysis (COBRA) methods have become widely

used tools for biotechnology and basic science in both academic and industrial laboratories.

They have been demonstrated as an effective approach to predict the catabolic capabilities of

an organism from its genome sequence. A new generation of COBRA models and methods

are now being developed–encompassing many biological processes and simulation strategies–

and next-generation models enable new types of predictions. ME-models are one such method

with enormous promise for enhancing the extent to which we can study an organisms. This

dissertation work has resulted in computational tools to enhance the dissemination of the ME-

model technologies. It has also demonstrated how the evolutionary pressure of efficient proteome

use has had a profound impact on cellular metabolism, and how this can be applied to improve

our understanding the factors underlying cell growth and how strains evolve. Lastly, ME-models

were applied to study new co-culture systems, broadening the applications of ME-models to

contribute to our understanding of community metabolism.
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